Covering reals by translations of a compact set

Tomek Bartoszynski (joint work with S. Shelah)

National Science Foundation

July 6, 2009
Problem (Gruenhage): Given a compact subset of the real line K is it consistent that the real line is covered by $< 2^{\aleph_0}$ translations of K? Or more generally, if K is a compact subset of a Polish group.

Obstruction: there exists a perfect set P such that for every x, $(K + x) \cap P$ is countable.

This obstruction is a Σ^1_2 property of K.
To see this note that K is small iff $\exists P$

1. P is closed and uncountable (Σ^1_1),
2. $\forall z \ (K + z) \cap P$ is countable. (Π^1_1)
Problem (Gruenhage): Given a compact subset of the real line K is it consistent that the real line is covered by $< 2^{\aleph_0}$ translations of K? Or more generally, if K is a compact subset of a Polish group.

Obstruction: there exists a perfect set P such that for every x, $(K + x) \cap P$ is countable.

This obstruction is a Σ^1_2 property of K. To see this note that K is small iff $\exists P$

1. P is closed and uncountable (Σ^1_1),
2. $\forall z (K + z) \cap P$ is countable. (Π^1_1)
Problem (Gruenhage): Given a compact subset of the real line K is it consistent that the real line is covered by $< 2^\aleph_0$ translations of K? Or more generally, if K is a compact subset of a Polish group.

Obstruction: there exists a perfect set P such that for every x, $(K + x) \cap P$ is countable.

This obstruction is a Σ^1_2 property of K.

To see this note that K is small iff $\exists P$

1. P is closed and uncountable (Σ^1_1),
2. $\forall z (K + z) \cap P$ is countable. (Π^1_1)
Problem (Gruenhage): Given a compact subset of the real line K is it consistent that the real line is covered by $< 2^\aleph_0$ translations of K? Or more generally, if K is a compact subset of a Polish group.

Obstruction: there exists a perfect set P such that for every x, $(K + x) \cap P$ is countable.

This obstruction is a Σ^1_2 property of K. To see this note that K is small iff $\exists P$
1. P is closed and uncountable (Σ^1_1),
2. $\forall z (K + z) \cap P$ is countable. (Π^1_1)
Problem (Gruenhage): Given a compact subset of the real line K is it consistent that the real line is covered by $< 2^\aleph_0$ translations of K? Or more generally, if K is a compact subset of a Polish group.

Obstruction: there exists a perfect set P such that for every x, $(K + x) \cap P$ is countable.

This obstruction is a Σ^1_2 property of K. To see this note that K is small iff $\exists P$

1. P is closed and uncountable (Σ^1_1),
2. $\forall z \ (K + z) \cap P$ is countable. (Π^1_1)
If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

if C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}) translations of K (folklore),

there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}) translations of K (Elekes-Steprans),

The same holds in any locally compact Polish group. (Elekes-Toth).
If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

If C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}) translations of K (folklore),

there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}) translations of K (Elekes-Steprans),

The same holds in any locally compact Polish group. (Elekes-Toth).
If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

if C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}) translations of K (folklore),

there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}) translations of K (Elekes-Steprans),

The same holds in any locally compact Polish group. (Elekes-Toth).
If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

if C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}^\ast) translations of K (folklore),

there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}^\ast) translations of K (Elekes-Steprans),

The same holds in any locally compact Polish group. (Elekes-Toth).
• If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

• if C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

• if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

• if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}) translations of K (folklore),

• there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}) translations of K (Elekes-Steprans),

• The same holds in any locally compact Polish group. (Elekes-Toth).
If C is the ordinary Cantor set then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Gruenhage)

if C has packing dimension < 1 then \mathbb{R} is not covered by $< 2^{\aleph_0}$ translations of C. (Darji-Keleti)

if K is not meager then \mathbb{R} is covered by countably many translations of K (folklore),

if K has positive measure then \mathbb{R} is covered by non(\mathcal{N}) translations of K (folklore),

there is a compact set K of measure zero such that \mathbb{R} is covered by cof(\mathcal{N}) translations of K (Elekes-Steprans),

The same holds in any locally compact Polish group. (Elekes-Toth).
Let G be a Polish group and let $\text{cov}^*_G(M)$ be the minimal cardinality of set $X \subseteq G$ such that for some closed nowhere dense set M, $X + M = G$. The value of $\text{cov}^*_G(M)$ depends on G. (Miller-Steprans)

Suppose that given an uncountable set $X \subseteq \mathbb{R}$ we can find a compact measure zero set K such that $\bigcup_{x \in X}(K + x) = \mathbb{R}$, then Borel Conjecture + Dual Borel Conjecture holds.
Let G be a Polish group and let $\text{cov}^*_G(M)$ be the minimal cardinality of set $X \subseteq G$ such that for some closed nowhere dense set M, $X + M = G$. The value of $\text{cov}^*_G(M)$ depends on G. (Miller-Steprans)

Suppose that given an uncountable set $X \subseteq \mathbb{R}$ we can find a compact measure zero set K such that $\bigcup_{x \in X} (K + x) = \mathbb{R}$. then Borel Conjecture + Dual Borel Conjecture holds.
Definition

A perfect set $K \subseteq 2^\omega$ is big if for every $n \in \omega$ there exists $j_n \in \omega$ such that for $X \subseteq 2^\omega$ and $x \in 2^\omega$, if

1. $|X| \leq n$,
2. $(2^\omega \setminus K) + X \neq 2^\omega$,
3. $x \upharpoonright j_n \in X \upharpoonright j_n$,

then

$$(2^\omega \setminus K) + (X \cup \{x\}) \neq 2^\omega.$$

We say that K is big* if $K \cap [s]$ is big for every $s \in 2^{<\omega}$ such that $K \cap [s] \neq \emptyset$.

Lemma

If K is big then K is not small.
Definition

A perfect set $K \subseteq 2^\omega$ is big if for every $n \in \omega$ there exists $j_n \in \omega$ such that for $X \subseteq 2^\omega$ and $x \in 2^\omega$, if

1. $|X| \leq n$,
2. $(2^\omega \setminus K) + X \neq 2^\omega$,
3. $x \upharpoonright j_n \in X \upharpoonright j_n$,

then

$$(2^\omega \setminus K) + (X \cup \{x\}) \neq 2^\omega.$$

We say that K is big* if $K \cap [s]$ is big for every $s \in 2^{<\omega}$ such that $K \cap [s] \neq \emptyset$.

Lemma

If K is big then K is not small.
Definition

A perfect set $K \subseteq 2^\omega$ is big if for every $n \in \omega$ there exists $j_n \in \omega$ such that for $X \subseteq 2^\omega$ and $x \in 2^\omega$, if

1. $|X| \leq n$,
2. $(2^\omega \setminus K) + X \neq 2^\omega$,
3. $x \upharpoonright j_n \in X \upharpoonright j_n$,

then

$$(2^\omega \setminus K) + (X \cup \{x\}) \neq 2^\omega.$$

We say that K is big* if $K \cap [s]$ is big for every $s \in 2^{<\omega}$ such that $K \cap [s] \neq \emptyset$.

Lemma

If K is big then K is not small.
Theorem

If K is big*, then there is a ccc-extension of the universe in which 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

Let $Q = \{ q \in 2^\omega : \forall \infty n \ q(n) = 0 \}$.

Lemma

Suppose that $K \subseteq 2^\omega$ is big*. There exists a ccc forcing notion P_K which adds real $z_K \in 2^\omega$ such that

$$\forces_{P_K} \forall x \in 2^\omega \cap V \exists q \in Q \ x \in K + z_K + q.$$

Let P_K be the collection of pairs (t, X) such that

1. $t \in 2^{<\omega}$ and X is a finite subset of 2^ω,
2. $((2^\omega \setminus K) + X) \cap [t] \neq \emptyset$.

For $(t_0, X_0), (t_1, X_1) \in P_K$, we put $(t_1, X_1) \geq (t_0, X_0)$ if $t_0 \subseteq t_1$ and $X_0 \subseteq X_1$.

Tomek Bartoszynski (joint work with S. Shelah)
Covering reals by translations of a compact set
Theorem

If K is big*, then there is a ccc-extension of the universe in which 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

Let $Q = \{ q \in 2^\omega : \forall \infty n \ q(n) = 0 \}$.

Lemma

Suppose that $K \subseteq 2^\omega$ is big*. There exists a ccc forcing notion P_K which adds real $z_K \in 2^\omega$ such that

$$\Vdash_{P_K} \forall x \in 2^\omega \cap V \ \exists q \in Q \ x \in K + z_K + q.$$

Let P_K be the collection of pairs (t, X) such that

1. $t \in 2^{<\omega}$ and X is a finite subset of 2^ω,

2. $(2^\omega \setminus K) + X) \cap [t] \neq \emptyset$.

For $(t_0, X_0), (t_1, X_1) \in P_K$, we put $(t_1, X_1) \geq (t_0, X_0)$ if $t_0 \subseteq t_1$ and $X_0 \subseteq X_1$.
Theorem

If K is big*, then there is a ccc-extension of the universe in which 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

Let $\mathcal{Q} = \{ q \in 2^\omega : \forall n q(n) = 0 \}$.

Lemma

Suppose that $K \subseteq 2^\omega$ is big*. There exists a ccc forcing notion \mathbb{P}_K which adds real $z_K \in 2^\omega$ such that

$$\vdash_{\mathbb{P}_K} \forall x \in 2^\omega \cap V \exists q \in \mathcal{Q} x \in K + z_K + q.$$

Let \mathbb{P}_K be the collection of pairs $((t, X))$ such that

1. $t \in 2^{<\omega}$ and X is a finite subset of 2^ω,
2. $((2^\omega \setminus K) + X) \cap [t] \neq \emptyset$.

For $(t_0, X_0), (t_1, X_1) \in \mathbb{P}_K$, we put $(t_1, X_1) \geq (t_0, X_0)$ if $t_0 \subseteq t_1$ and $X_0 \subseteq X_1$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set
Theorem

If K is big*, then there is a ccc-extension of the universe in which 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

Let $Q = \{q \in 2^\omega : \forall \infty n \ q(n) = 0\}$.

Lemma

Suppose that $K \subseteq 2^\omega$ is big*. There exists a ccc forcing notion \mathbb{P}_K which adds real $z_K \in 2^\omega$ such that

$$\vdash_{\mathbb{P}_K} \forall x \in 2^\omega \cap V \exists q \in Q \ x \in K + z_K + q.$$

Let \mathbb{P}_K be the collection of pairs (t, X) such that

1. $t \in 2^{<\omega}$ and X is a finite subset of 2^ω,
2. $((2^\omega \setminus K) + X) \cap [t] \neq \emptyset$.

For $(t_0, X_0), (t_1, X_1) \in \mathbb{P}_K$, we put $(t_1, X_1) \geq (t_0, X_0)$ if $t_0 \subseteq t_1$ and $X_0 \subseteq X_1$.

Tomek Bartoszynski (joint work with S. Shelah)
Covering reals by translations of a compact set
Theorem

If K is big*, then there is a ccc-extension of the universe in which 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

Let $Q = \{ q \in 2^\omega : \forall \infty n \ q(n) = 0 \}$.

Lemma

Suppose that $K \subseteq 2^\omega$ is big*. There exists a ccc forcing notion \mathbb{P}_K which adds real $z_K \in 2^\omega$ such that

$$\models_{\mathbb{P}_K} \forall x \in 2^\omega \cap V \exists q \in Q \times x \in K + z_K + q.$$

Let \mathbb{P}_K be the collection of pairs (t, X) such that

1. $t \in 2^{<\omega}$ and X is a finite subset of 2^ω,
2. $((2^\omega \setminus K) + X) \cap [t] \neq \emptyset$.

For $(t_0, X_0), (t_1, X_1) \in \mathbb{P}_K$, we put $(t_1, X_1) \geq (t_0, X_0)$ if $t_0 \subseteq t_1$ and $X_0 \subseteq X_1$.
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_\omega_2}$,

$$\forall x \in 2^\omega \ \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \Vdash_{S_\omega_2} \check{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \Vdash \check{x} \in Q$.

Suppose that K is not small and let $p \Vdash_{S_\omega_2} \check{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \Vdash_{S_\omega_2} \check{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah)
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_1}}$,

$$\forall x \in 2^\omega \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{S_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set
Theorem

Suppose that $K \subseteq 2^{\omega}$. If K is not small, then it is consistent that 2^{ω} is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{\mathcal{S}_{\omega_2}}$,

$$\forall x \in 2^{\omega}, \exists z \in V \cap 2^{\omega}, x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \models_{\mathcal{S}_{\omega_2}} \dot{x} \in 2^{\omega} \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^{\omega}$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{\mathcal{S}_{\omega_2}} \dot{x} \in 2^{\omega}$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^{\omega}$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{\mathcal{S}_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah)

Covering reals by translations of a compact set
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_2}}$,

$$\forall x \in 2^\omega \ \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{S_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah)

Covering reals by translations of a compact set
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $\mathbf{V}^{S_{\omega_2}}$,

$$\forall x \in 2^\omega \exists z \in \mathbf{V} \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \Vdash_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus \mathbf{V}$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \Vdash \dot{x} \in Q$.

Suppose that K is not small and let $p \Vdash_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \Vdash \dot{x} \in Q \subseteq K + z$.
Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_2}}$,

$$\forall x \in 2^\omega \ \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Suppose that $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{S_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah)

Covering reals by translations of a compact set.
Theorem

Suppose that $K \subseteq 2^{\omega}$. If K is not small, then it is consistent that 2^{ω} is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{\mathcal{S}_{\omega_2}}$,

$$\forall x \in 2^{\omega} \exists z \in V \cap 2^{\omega} \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \models_{\mathcal{S}_{\omega_2}} \dot{x} \in 2^{\omega} \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^{\omega}$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{\mathcal{S}_{\omega_2}} \dot{x} \in 2^{\omega}$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^{\omega}$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{\mathcal{S}_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set.
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.
The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_2}}$,

$$\forall x \in 2^\omega \ \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \models \dot{x} \in Q$.

Suppose that K is not small and let $p \models_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \models_{S_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_2}}$,

$$\forall x \in 2^\omega \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \vDash S_{\omega_2} \ x \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \vDash \dot{x} \in Q$.

Suppose that K is not small and let $p \vDash S_{\omega_2} \ x \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \vDash \dot{x} \in Q \subset K + z$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set
Theorem

Suppose that $K \subseteq 2^\omega$. If K is not small, then it is consistent that 2^ω is covered by $< 2^{\aleph_0}$ translations of K.

The same holds for subsets K of locally compact abelian Polish groups.

If K is not small then in the Sacks model $V^{S_{\omega_1}}$,

$$\forall x \in 2^\omega \ \exists z \in V \cap 2^\omega \ x \in K + z.$$

The following is a technical restatement of this fact.

Theorem

Suppose that $p \Vdash_{S_{\omega_2}} \dot{x} \in 2^\omega \setminus V$. Then there exists $p' \geq p$ and a perfect set $P \subseteq 2^\omega$ such that for every perfect set $Q \subseteq P$ there exists $q \geq p'$ such that $q \Vdash \dot{x} \in Q$.

Suppose that K is not small and let $p \Vdash_{S_{\omega_2}} \dot{x} \in 2^\omega$. Find $p' \geq p$ and P. Since K is not small there is $z \in 2^\omega$ such that $P \cap (K + z)$ is uncountable. Let $Q \subseteq P \cap (K + z)$ be a perfect set. It follows that there is $q \geq p'$ such that $q \Vdash_{S_{\omega_2}} \dot{x} \in Q \subseteq K + z$.

Tomek Bartoszynski (joint work with S. Shelah)

Covering reals by translations of a compact set
\[\text{CPA} \iff 2^\mathbb{N}_0 = \aleph_2 \text{ and for every "appropriately" dense family } \mathcal{E}_0 \subset S \text{ there is an } \mathcal{E}_0 \subset \mathcal{E} \text{ such that } |\mathcal{E}_0| \leq \aleph_1 \text{ and } |\mathbb{R} \setminus \bigcup \mathcal{E}_0| \leq \aleph_1. \]

Theorem

Assume \(\text{CPA}_{\text{prism}} \). Then if \(K \) is not small then \(\mathbb{R} \) is covered by \(\aleph_1 \) translations of \(K \).
Examples of sets which are not small

Let \(\{ I_n : n \in \omega \} \) be a partition of \(\omega \) into finite sets of increasing size and let \(K_n \subset 2^{I_n} \). Consider sets of form \(K = \prod_n K_n \).

Lemma

If \(\lim_n \frac{|K_n|}{2^{|I_n|}} = 1 \) then \(K \) is big*.

Lemma (Elekes-Toth)

Suppose that \(I \subset \omega \) is finite, \(n \in \omega \) and \(C \subset 2^I \) is such that

\[
\frac{|C|}{2^{|I|}} \geq 1 - \frac{1}{n+1}.
\]

For any \(X \subset 2^I \) of size \(\leq n \) there exists \(t \in 2^I \) such that \(t + X \subseteq C \).

Choose \(K_n \)'s such that

\[
1 - \frac{1}{n+1} \leq \frac{|K_n|}{2^{|I_n|}} \leq 1 - \frac{1}{2n+1}.
\]

Then \(K = \prod_n K_n \) has measure zero.

Tomek Bartoszynski (joint work with S. Shelah)

Covering reals by translations of a compact set
Examples of sets which are not small

Let \(\{ I_n : n \in \omega \} \) be a partition of \(\omega \) into finite sets of increasing size and let \(K_n \subset 2^{I_n} \). Consider sets of form \(K = \prod_n K_n \).

Lemma

If \(\lim_n \frac{|K_n|}{2|I_n|} = 1 \) then \(K \) is big*.

Lemma (Elekes-Toth)

Suppose that \(I \subseteq \omega \) is finite, \(n \in \omega \) and \(C \subset 2^I \) is such that
\[
\frac{|C|}{2^{|I|}} \geq 1 - \frac{1}{n+1}.
\]
For any \(X \subseteq 2^I \) of size \(\leq n \) there exists \(t \in 2^I \) such that \(t + X \subseteq C \).

Choose \(K_n \)'s such that
\[
1 - \frac{1}{n+1} \leq \frac{|K_n|}{2|I_n|} \leq 1 - \frac{1}{2n+1}.
\]

Then \(K = \prod_n K_n \) has measure zero.

Tomek Bartoszynski (joint work with S. Shelah)
Examples of sets which are not small

Let \(\{I_n : n \in \omega\} \) be a partition of \(\omega \) into finite sets of increasing size and let \(K_n \subset 2^{I_n} \). Consider sets of form \(K = \prod_n K_n \).

Lemma

If \(\lim_n \frac{|K_n|}{2^{I_n}} = 1 \) then \(K \) is big*.

Lemma (Elekes-Toth)

Suppose that \(I \subseteq \omega \) is finite, \(n \in \omega \) and \(C \subset 2^I \) is such that
\[
\frac{|C|}{2^{|I|}} \geq 1 - \frac{1}{n+1}.
\]
For any \(X \subset 2^I \) of size \(\leq n \) there exists \(t \in 2^I \) such that \(t + X \subseteq C \).

Choose \(K_n \)'s such that
\[
1 - \frac{1}{n+1} \leq \frac{|K_n|}{2^{I_n}} \leq 1 - \frac{1}{2n+1}.
\]
Then \(K = \prod_n K_n \) has measure zero.
Examples of sets which are not small

Let \(\{I_n : n \in \omega\} \) be a partition of \(\omega \) into finite sets of increasing size and let \(K_n \subset 2^{I_n} \). Consider sets of form \(K = \prod_n K_n \).

Lemma

If \(\lim_n \frac{|K_n|}{2^{|I_n|}} = 1 \) then \(K \) is big\(^*\).

Lemma (Elekes-Toth)

Suppose that \(I \subseteq \omega \) is finite, \(n \in \omega \) and \(C \subset 2^I \) is such that
\[
|C| \geq 1 - \frac{1}{n+1}.
\]
For any \(X \subseteq 2^I \) of size \(\leq n \) there exists \(t \in 2^I \) such that \(t + X \subseteq C \).

Choose \(K_n \)'s such that
\[
1 - \frac{1}{n+1} \leq \frac{|K_n|}{2^{|I_n|}} \leq 1 - \frac{1}{2n+1}.
\]

Then \(K = \prod_n K_n \) has measure zero.
If \(\lim_{n} \frac{|K_n|}{|2^I_n|} < 1 \) then \(K \) may be small or big\(^*\), depending on the choice of \(K_n \)'s.

Lemma

Fix \(\varepsilon > 0 \). There exists \(K_n \subseteq 2^I_n \) such that for each \(n \),
\[
|K_n|/2^{|I_n|} \leq \varepsilon \quad \text{and} \quad K = \prod_n K_n \text{ is small}.
\]

Lemma

Fix a sequence of positive reals \(\{\varepsilon_n : n \in \omega\} \). There exists a sequence \(K_n \subseteq 2^I_n \) such that for each \(n \),
\[
|K_n|/2^{|I_n|} \leq \varepsilon_n \quad \text{and} \quad K = \prod_n K_n \text{ is big}\(^*\).
If $\lim_{n} \frac{|K_n|}{|2^I_n|} < 1$ then K may be small or big*, depending on the choice of K_n's.

Lemma

Fix $\varepsilon > 0$. There exists $K_n \subseteq 2^I_n$ such that for each n, $|K_n|/2^{|I_n|} \leq \varepsilon$ and $K = \prod_n K_n$ is small.

Lemma

Fix a sequence of positive reals $\{\varepsilon_n : n \in \omega\}$. There exists a sequence $K_n \subseteq 2^I_n$ such that for each n, $|K_n|/2^{|I_n|} \leq \varepsilon_n$ and $K = \prod_n K_n$ is big*.
If \(\lim_n \frac{|K_n|}{2^n} < 1 \) then \(K \) may be small or big*, depending on the choice of \(K_n \)’s.

Lemma

Fix \(\varepsilon > 0 \). There exists \(K_n \subseteq 2^n \) such that for each \(n \),
\[
|K_n|/2^n \leq \varepsilon
\]
and \(K = \prod_n K_n \) is small.

Lemma

Fix a sequence of positive reals \(\{\varepsilon_n : n \in \omega\} \). There exists a sequence \(K_n \subseteq 2^n \) such that for each \(n \),
\[
|K_n|/2^n \leq \varepsilon_n
\]
and \(K = \prod_n K_n \) is big*.
Theorem (Bartoszynski-Shelah)

Suppose that $m \in \omega$ and $0 < \delta < \varepsilon < 1$ are given. There exists $n \in \omega$ such that for every finite set $I \subseteq \omega$ of size at least n, there exists a set $C \subseteq 2^I$ such that $\varepsilon + \delta \geq |C| \cdot 2^{-|I|} \geq \varepsilon - \delta$ and for every set $X \subseteq 2^I$, $|X| \leq m$

\[
\left| \frac{|\bigcap_{s \in X} (C + s)|}{2^{|I|}} - \varepsilon |X| \right| < \delta.
\]

Note that the theorem says that we can choose C is such a way that for any sequences $s_1, \ldots, s_m \in 2^I$ the sets $s_1 + C, \ldots, s_m + C$ are probabilistically independent with error δ. Thus, if we choose δ to be much smaller than ε^m, then if $|X| < m$ it follows that $\bigcap_{s \in X} (C + s) \neq \emptyset$. In particular, if $t \in \bigcap_{s \in X} (C + s)$ then $X \subseteq C + t$.

Tomek Bartoszynski (joint work with S. Shelah) Covering reals by translations of a compact set
Theorem (Bartoszynski-Shelah)

Suppose that $m \in \omega$ and $0 < \delta < \varepsilon < 1$ are given. There exists $n \in \omega$ such that for every finite set $I \subseteq \omega$ of size at least n, there exists a set $C \subseteq 2^I$ such that $\varepsilon + \delta \geq |C| \cdot 2^{-|I|} \geq \varepsilon - \delta$ and for every set $X \subseteq 2^I$, $|X| \leq m$

\[
\left| \frac{|\bigcap_{s \in X} (C + s)|}{2^{|I|}} - \varepsilon|X| \right| < \delta.
\]

Note that the theorem says that we can choose C is such a way that for any sequences $s_1, \ldots, s_m \in 2^I$ the sets $s_1 + C, \ldots, s_m + C$ are probabilistically independent with error δ.

Thus, if we choose δ to be much smaller than ε^m, then if $|X| < m$ it follows that $\bigcap_{s \in X} (C + s) \neq \emptyset$. In particular, if $t \in \bigcap_{s \in X} (C + s)$ then $X \subseteq C + t$.
Theorem (Bartoszynski-Shelah)

Suppose that \(m \in \omega \) and \(0 < \delta < \varepsilon < 1 \) are given. There exists \(n \in \omega \) such that for every finite set \(I \subseteq \omega \) of size at least \(n \), there exists a set \(C \subseteq 2^I \) such that \(\varepsilon + \delta \geq |C| \cdot 2^{-|I|} \geq \varepsilon - \delta \) and for every set \(X \subseteq 2^I \), \(|X| \leq m \)

\[
\left| \frac{|\bigcap_{s \in X} (C + s)|}{2^{|I|}} - \varepsilon |X| \right| < \delta.
\]

Note that the theorem says that we can choose \(C \) is such a way that for any sequences \(s_1, \ldots, s_m \in 2^I \) the sets \(s_1 + C, \ldots, s_m + C \) are probabilistically independent with error \(\delta \).

Thus, if we choose \(\delta \) to be much smaller than \(\varepsilon^m \), then if \(|X| < m \) it follows that \(\bigcap_{s \in X} (C + s) \neq \emptyset \). In particular, if \(t \in \bigcap_{s \in X} (C + s) \) then \(X \subseteq C + t \).