The descriptive set theory of orbit equivalence

Inessa Epstein

California Institute of Technology

Second European Set Theory Meeting, Bedlewo, Poland
July 7, 2009
Suppose that \mathcal{A} is a standard Borel space and E is an equivalence relation on \mathcal{A}.

Definition

E on \mathcal{A} is **Borel reducible** to F on \mathcal{B}, denoted $E \leq_B F$ if there is a Borel map $\phi: \mathcal{A} \to \mathcal{B}$ such that

$$xEy \iff \phi(x)F\phi(y).$$

This is meant to reflect that F is “more complex” than E and that the points of \mathcal{A} can be classified up to E-equivalence by a Borel assignment of invariants that are F-equivalence classes.
For $n \in \mathbb{N}$, if $E \leq_B \text{id}(n)$, then E has at most n classes.
For $n \in \mathbb{N}$, if $E \leq_B \text{id}(n)$, then E has at most n classes.

If $E \leq_B \text{id}(%N$), then E has countably many classes.
For \(n \in \mathbb{N} \), if \(E \leq_B id(n) \), then \(E \) has at most \(n \) classes.

If \(E \leq_B id(\mathbb{N}) \), then \(E \) has countably many classes.

\(E \) is smooth if \(E \leq_B id(\mathbb{R}) \).
For $n \in \mathbb{N}$, if $E \leq_B id(n)$, then E has at most n classes.

If $E \leq_B id(\mathbb{N})$, then E has countably many classes.

E is smooth if $E \leq_B id(\mathbb{R})$.

Example: If we consider E to be the equivalence relation of similarity on the space of $n \times n$ matrices, then we can let $f(A)$ be the Jordan form of A.
E_0 is the equivalence relation given by eventual agreement on $2^\mathbb{N}$:

$$xE_0y \iff \exists m \in \mathbb{N} \quad \forall n > m \quad x(n) = y(n)$$

E is hyperfinite if $E \leq_B E_0$, or, equivalently, E is given by a Borel action of \mathbb{Z}.
E_0 is the equivalence relation given by eventual agreement on $2^\mathbb{N}$:

$$x E_0 y \iff \exists m \in \mathbb{N} \quad \forall n > m \quad x(n) = y(n)$$

E is **hyperfinite** if $E \leq_B E_0$, or, equivalently, E is given by a Borel action of \mathbb{Z}.

Example: The isomorphism relation for torsion free abelian groups of rank 1 is Borel bireducible to E_0.
E_0 is the equivalence relation given by eventual agreement on $2^\mathbb{N}$:

$$xE_0 y \iff \exists m \in \mathbb{N} \ \forall n > m \ x(n) = y(n)$$

E is hyperfinite if $E \leq_B E_0$, or, equivalently, E is given by a Borel action of \mathbb{Z}.

Example: The isomorphism relation for torsion free abelian groups of rank 1 is Borel bireducible to E_0.

$$id(1) <_B id(2) <_B \ldots <_B id(\mathbb{N}) <_B id(\mathbb{R}) <_B E_0$$
Countable structures

Suppose that \mathcal{L} is a countable relational language and $\text{Mod}(\mathcal{L})$ is the set of models for \mathcal{L} with the underlying set \mathbb{N}.
Suppose that \mathcal{L} is a countable relational language and $\text{Mod}(\mathcal{L})$ is the set of models for \mathcal{L} with the underlying set \mathbb{N}.

Then each relation $R_i \in \mathcal{L}$ is a subset of $\mathbb{N}^{a(i)}$ where $a(i)$ is the parity of R_i.

Thus, $\text{Mod}(\mathcal{L})$ can be identified with $\prod_{i \in \mathbb{N}} 2^{\mathbb{N}^{a(i)}}$ or $2^{\mathbb{N}}$ and equip this space with the product topology to make $\text{Mod}(\mathcal{L})$ a standard Borel space.
Countable structures

Suppose that \mathcal{L} is a countable relational language and $\text{Mod}(\mathcal{L})$ is the set of models for \mathcal{L} with the underlying set \mathbb{N}.

Then each relation $R_i \in \mathcal{L}$ is a subset of $\mathbb{N}^{a(i)}$ where $a(i)$ is the parity of R_i.

Thus, $\text{Mod}(\mathcal{L})$ can be identified with $\prod_{i \in \mathbb{N}} 2^{\mathbb{N}^{a(i)}}$ or $2^\mathbb{N}$ and equip this space with the product topology to make $\text{Mod}(\mathcal{L})$ a standard Borel space.

The logic action of S_∞ on $\text{Mod}(\mathcal{L})$ is given by

$$f \cdot M \models \phi(a_1, \ldots, a_n) \iff M \models \phi(f^{-1}(a_1), \ldots, f^{-1}(a_n)).$$

The orbit equivalence relation of S_∞ on $\text{Mod}(\mathcal{L})$ gives rise to the isomorphism equivalence relation.
Definition

An equivalence relation E on a Borel space X is **classifiable by countable structures** if there is a countable language \mathcal{L} and a Borel map $\phi : X \to Mod(\mathcal{L})$ such that

$$xEy \iff \phi(x) \cong \phi(y).$$
An equivalence relation E on a Borel space X is **classifiable by countable structures** if there is a countable language \mathcal{L} and a Borel map $\phi: X \to \text{Mod}(\mathcal{L})$ such that

$$xEy \iff \phi(x) \cong \phi(y).$$

The equivalence relations that are classifiable by countable structures include equivalence relations that can be reasonably classified using countable groups, graphs, fields, etc. as complete invariants.
The space of actions

Γ is a countable infinite group and \((X, \mu)\) a standard probability space (Borel isomorphic to \([0, 1]\) with Lebesgue measure.) \(\Gamma \curvearrowright (X, \mu)\) by Borel automorphisms. This gives rise to the orbit equivalence relation

\[E_\Gamma = \{(x, \gamma \cdot x) \mid x \in X, \gamma \in \Gamma\}. \]

The action is:

- **free** if for any \(\gamma \in \Gamma\), \(\gamma \cdot x = x \implies \gamma = e\).
- **measure preserving** if for any Borel \(A \subset X\) and \(\gamma \in \Gamma\), \(\mu(A) = \mu(\gamma \cdot A)\).
- **ergodic** if for any Borel \(\Gamma\)-invariant \(A \subset X\), \(\mu(A) = 1\) or \(\mu(A) = 0\).
The space of actions

For a group Γ, $A(\Gamma, X, \mu)$ is the space of measure preserving actions of Γ on (X, μ) where (X, μ) is a standard probability space. This identifies with the space of homomorphisms of Γ into $Aut(X, \mu)$.
The space of actions

For a group Γ, $A(\Gamma, X, \mu)$ is the space of measure preserving actions of Γ on (X, μ) where (X, μ) is a standard probability space.

This identifies with the space of homomorphisms of Γ into $Aut(X, \mu)$.

$Aut(X, \mu)$ is a Polish space with the weak topology generated by the functions

$$A \mapsto T(A) \quad A \in MALG_\mu, T \in Aut(X, \mu)$$

and $Aut(X, \mu)^\Gamma$ is Polish with the product topology.
The space of actions

For a group Γ, $A(\Gamma, X, \mu)$ is the space of measure preserving actions of Γ on (X, μ) where (X, μ) is a standard probability space.

This identifies with the space of homomorphisms of Γ into $Aut(X, \mu)$.

$Aut(X, \mu)$ is a Polish space with the weak topology generated by the functions

$$A \mapsto T(A) \quad A \in MALG_{\mu}, \ T \in Aut(X, \mu)$$

and $Aut(X, \mu)^{\Gamma}$ is Polish with the product topology.

The space of homomorphisms of Γ into $Aut(X, \mu)$ is a closed subset of $Aut(X, \mu)^{\Gamma}$. The space of free and ergodic actions, which will be denoted A_{Γ} is closed in $A(\Gamma, X, \mu)$.
Orbit equivalence

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$, $\Delta \curvearrowright (Y, \nu)$ are **orbit equivalent** if there are conull subsets $A \subset X$, $B \subset Y$ and a measure-preserving bijection $\phi: A \rightarrow B$ such that for all $x \in A$,

$$\phi(\Gamma \cdot x) = \Delta \cdot \phi(x).$$
Orbit equivalence

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$, $\Delta \curvearrowright (Y, \nu)$ are **orbit equivalent** if there are conull subsets $A \subset X, B \subset Y$ and a measure-preserving bijection $\phi: A \rightarrow B$ such that for all $x \in A$,

$$\phi(\Gamma \cdot x) = \Delta \cdot \phi(x).$$

The **group measure space construction** (Murray-von Neumann, 1936) associates to every free, measure preserving, ergodic action $\Gamma \curvearrowright (X, \mu)$ a II_1 factor $L^\infty(X) \rtimes \Gamma$.
Definition

Two actions $\Gamma \actson (X, \mu)$, $\Delta \actson (Y, \nu)$ are orbit equivalent if there are conull subsets $A \subseteq X$, $B \subseteq Y$ and a measure-preserving bijection $\phi : A \to B$ such that for all $x \in A$,

$$\phi(\Gamma \cdot x) = \Delta \cdot \phi(x).$$

The group measure space construction (Murray-von Neumann, 1936) associates to every free, measure preserving, ergodic action $\Gamma \actson (X, \mu)$ a II_1 factor $L^\infty(X) \rtimes \Gamma$.

Theorem (Feldman-Moore, 1977)

A measure space isomorphism $\phi : X \to Y$ extends to $L^\infty(X) \rtimes \Gamma \cong L^\infty(Y) \rtimes \Delta$ iff ϕ is an orbit equivalence.
Orbit equivalence

Definition

OE_Γ is the equivalence relation on \mathcal{A}_Γ given by two actions being orbit equivalent.

Question

For a given group Γ, how many orbit-inequivalent actions that are free, measure preserving, ergodic does Γ admit?

Question

What can be said about the Borel complexity of OE_Γ?
Orbit equivalence

Definition

OE_Γ is the equivalence relation on A_Γ given by two actions being orbit equivalent.

Question

For a given group Γ, how many orbit-inequivalent actions that are free, measure preserving, ergodic does Γ admit?
Definition

OE_{Γ} is the equivalence relation on A_{Γ} given by two actions being orbit equivalent.

Question

For a given group Γ, how many orbit-inequivalent actions that are free, measure preserving, ergodic does Γ admit?

Question

What can be said about the Borel complexity of OE_{Γ}?
Amenable groups

Theorem (Dye, about 1960)
Any two measure preserving ergodic actions of \(\mathbb{Z} \) are orbit equivalent.
Amenable groups

Theorem (Dye, about 1960)
Any two measure preserving ergodic actions of \mathbb{Z} are orbit equivalent.

Theorem (Ornstein-Weiss, 1980)
Any two measure preserving ergodic actions of an amenable group are orbit equivalent to such an action of \mathbb{Z}.
Almost invariant vectors

Let $\pi: \Gamma \to U(H)$ be a unitary representation of Γ on some Hilbert space H.
Then $v \in H$ is a π-invariant vector if for all $\gamma \in \Gamma$, $\pi(\gamma) \cdot v = v$.
Almost invariant vectors

Let \(\pi : \Gamma \to U(H) \) be a unitary representation of \(\Gamma \) on some Hilbert space \(H \).
Then \(v \in H \) is a \(\pi \)-invariant vector if for all \(\gamma \in \Gamma \), \(\pi(\gamma) \cdot v = v \).

Definition

\(\pi \) admits almost invariant vectors if for any \(Q \subset \Gamma \) finite, \(\epsilon > 0 \), there is a unit vector \(v \in H \), such that

\[
\forall \gamma \in Q \quad \| \pi(\gamma) \cdot v - v \| < \epsilon.
\]
Amenable groups

Γ acts on $l^2(\Gamma)$ by shift

$$\gamma \cdot f(x) = f(\gamma^{-1} \cdot x).$$

Definition

Γ is **amenable** if the representation of Γ on $l^2(\Gamma)$ obtained from the shift action admits almost invariant vectors.
Amenable groups

Γ acts on $l^2(\Gamma)$ by shift

$$\gamma \cdot f(x) = f(\gamma^{-1} \cdot x).$$

Definition

Γ is **amenable** if the representation of Γ on $l^2(\Gamma)$ obtained from the shift action admits almost invariant vectors.

Equivalently, if for every $\epsilon > 0$, $A \subset \Gamma$ finite, there is a finite set $F \subset \Gamma$ such that

$$|\gamma \cdot A \Delta A| < \epsilon \cdot |A| \quad \forall \gamma \in A.$$
Amenable groups

Γ acts on \(l^2(\Gamma) \) by shift

\[
\gamma \cdot f(x) = f(\gamma^{-1} \cdot x).
\]

Definition

Γ is **amenable** if the representation of Γ on \(l^2(\Gamma) \) obtained from the shift action admits almost invariant vectors.

Equivalently, if for every \(\epsilon > 0 \), \(A \subset \Gamma \) finite, there is a finite set \(F \subset \Gamma \) such that

\[
|\gamma \cdot A \Delta A| < \epsilon \cdot |A| \quad \forall \gamma \in A.
\]

Examples: finite groups, \(\mathbb{Z} \), abelian groups

Non-example: \(F_2 \)
Non-amenable groups

<table>
<thead>
<tr>
<th>Theorem (Connes-Weiss, Schmidt, 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Γ does not have property (T), then Γ admits at least 2 orbit inequivalent free, measure preserving, ergodic actions.</td>
</tr>
</tbody>
</table>
Non-amenable groups

Theorem (Connes-Weiss, Schmidt, 1980)
If Γ does not have property (T), then Γ admits at least 2 orbit inequivalent free, measure preserving, ergodic actions.

Theorem (Bezuglyï - Golodets, 1981)
There is some countable infinite group that admits continuum many orbit inequivalent free, measure preserving, ergodic actions.
Property (T)

Definition

Γ has property (T) if there is a finite $Q \subset \Gamma$ and $\epsilon > 0$ such that for any unitary representation π of Γ, if π admits a (Q, ϵ)-invariant vector, then π admits an invariant unit vector.

Example: $SL_3(\mathbb{Z})$
Property (T)

Definition

Γ has property (T) if there is a finite $Q \subset \Gamma$ and $\epsilon > 0$ such that for any unitary representation π of Γ, if π admits a (Q, ϵ)-invariant vector, then π admits an invariant unit vector.

Example: $SL_3(\mathbb{Z})$

Theorem (Zimmer, Gefter-Golodets, 1980’s)

Some groups with property (T) have continuum many orbit inequivalent free, measure preserving, ergodic actions. $SL_3(\mathbb{Z})$ is among these groups.
Property (T)

Definition

Γ has property (T) if there is a finite $Q \subset \Gamma$ and $\epsilon > 0$ such that for any unitary representation π of Γ, if π admits a (Q, ϵ)-invariant vector, then π admits an invariant unit vector.

Example: $SL_3(\mathbb{Z})$

Theorem (Zimmer, Gefter-Golodets, 1980’s)

Some groups with property (T) have continuum many orbit inequivalent free, measure preserving, ergodic actions. $SL_3(\mathbb{Z})$ is among these groups.

Theorem (Hjorth, 2005)

All groups with property (T) admit continuum many orbit inequivalent free, measure preserving, ergodic actions.
Relative property (T)

Definition

If $\Delta \leq \Gamma$, then the pair (Γ, Δ) has **relative property (T)** if there is a finite $Q \subset \Gamma$ and $\epsilon > 0$ such that for any unitary representation π of Γ, if π admits a (Q, ϵ)-invariant vector, then $\pi|\Delta$ admits an invariant unit vector.
Relative property (T)

Definition

If $\Delta \leq \Gamma$, then the pair (Γ, Δ) has relative property (T) if there is a finite $Q \subset \Gamma$ and $\epsilon > 0$ such that for any unitary representation π of Γ, if π admits a (Q, ϵ)-invariant vector, then $\pi|\Delta$ admits an invariant unit vector.

If we consider the usual action of $SL_2(\mathbb{Z})$ on \mathbb{Z}^2 by matrix multiplication, then the pair $(SL_2(\mathbb{Z}) \rtimes \mathbb{Z}^2, \mathbb{Z}^2)$ has relative property (T).

F_n embeds into $SL_2(\mathbb{Z})$ as a finite index subgroup to induce an action of F_n on \mathbb{Z}^2. The pair $(F_n \rtimes \mathbb{Z}^2, \mathbb{Z}^2)$ also has relative property (T).
$SL_2(\mathbb{Z})$ also acts on (\mathbb{T}^2, h) where h is the Haar measure. We may identify \mathbb{Z}^2 with the group of characters on \mathbb{T}^2.
$SL_2(\mathbb{Z})$ also acts on (\mathbb{T}^2, h) where h is the Haar measure. We may identify \mathbb{Z}^2 with the group of characters on \mathbb{T}^2.

Theorem (Gaboriau - Popa, 2006)

F_n for $n \geq 2$ admits continuum many orbit inequivalent free, measure preserving, ergodic actions.
The following classes of non-amenable groups also admit continuum many orbit inequivalent actions:

- Weakly rigid groups (Popa, 2006);
- Products of groups satisfying a certain cohomological property (Monod-Shalom, 2006);
- Mapping class groups (Kida, 2007).
Relative property (T) of F_2

For $\Delta \leq \Gamma$ and an action $\Delta \curvearrowright (Z, \nu)$, one can induce an action of Γ on the space (Z^N, ν^N) where $N = [\Gamma : \Delta]$.
For \(\Delta \leq \Gamma \) and an action \(\Delta \actson (Z, \nu) \), one can induce an action of \(\Gamma \) on the space \((Z^N, \nu^N) \) where \(N = [\Gamma : \Delta] \).

Theorem (Ioana)

If \(F_2 \leq \Gamma \), then \(\Gamma \) admits continuum many orbit inequivalent free, measure preserving, ergodic actions.
Relative property (T) of \mathbb{F}_2

For $\Delta \leq \Gamma$ and an action $\Delta \bowtie (Z, \nu)$, one can induce an action of Γ on the space (Z^N, ν^N) where $N = [\Gamma : \Delta]$.

Theorem (Ioana)

If $\mathbb{F}_2 \leq \Gamma$, then Γ admits continuum many orbit inequivalent free, measure preserving, ergodic actions.

There are non-amenable groups that don’t contain a copy of \mathbb{F}_2 (Ol’šanskiĭ, 1980).
Suppose $\Gamma \curvearrowright^{a_0} (X, \mu)$ and $\Delta \curvearrowright^{b_0} (X, \mu)$ such that $E^{b_0}_{\Delta} \subset E^{a_0}_{\Gamma}$. Given $\Delta \curvearrowright^{a} (Z, \nu)$, we produce a way to induce actions $\Delta \curvearrowright^{c} (Y, m)$ and $\Gamma \curvearrowright^{d} (Y, m)$.
Suppose $\Gamma \curvearrowright^{a_0} (X, \mu)$ and $\Delta \curvearrowright^{b_0} (X, \mu)$ such that $E_{\Delta}^{b_0} \subset E_{\Gamma}^{a_0}$. Given $\Delta \curvearrowright^{a} (Z, \nu)$, we produce a way to induce actions $\Delta \curvearrowright^{c} (Y, m)$ and $\Gamma \curvearrowright^{d} (Y, m)$.

Theorem (E.)

Suppose that there exist free, measure preserving actions $\Gamma \curvearrowright (X, \mu)$, $F_2 \curvearrowright (X, \mu)$ such that Γ acts ergodically and $E_{F_2} \subset E_{\Gamma}$. Then Γ admits continuum many orbit inequivalent free, measure preserving ergodic actions.
Theorem (Gaboriau-Lyons)
Every non-amenable group admits a free, measure preserving, ergodic action whose orbit equivalence relation contains a subequivalence relation given by a free, measure preserving action of F_2.

Corollary
Every non-amenable group admits continuum many orbit inequivalent free, measure preserving, ergodic actions.
Theorem (Gaboriau-Lyons)

Every non-amenable group admits a free, measure preserving, ergodic action whose orbit equivalence relation contains a subequivalence relation given by a free, measure preserving action of F_2.

Corollary

Every non-amenable group admits continuum many orbit inequivalent free, measure preserving, ergodic actions.
\(\mathbf{F}_2 \) admits continuum many non-isomorphic irreducible representations. These can be turned into actions of \(\mathbf{F}_2 \ltimes (\mathbb{Z}_i, \nu_i) \).

\(\mathbf{F}_2 \) also acts on \((\mathbb{T}^2, h)\) where \(h \) is the Haar measure. Then \(\hat{\mathbb{T}}^2 \cong \mathbb{Z}^2 \) and \((\mathbf{F}_2 \ltimes \mathbb{Z}^2, \mathbb{Z}^2) \) has relative property \(T \).
F_2 admits continuum many non-isomorphic irreducible representations. These can be turned into actions of $F_2 \rtimes (Z_i, \nu_i)$.

F_2 also acts on (T^2, h) where h is the Haar measure. Then $\hat{T}^2 \cong \mathbb{Z}^2$ and $(F_2 \rtimes \mathbb{Z}^2, \mathbb{Z}^2)$ has relative property T.

Using the actions of F_2 and Γ from the theorem of Gaboriau and Lyons, we induce from the diagonal action $F_2 \rtimes^a (Z_i \times T^2, \nu_i \times h)$.
\mathbb{F}_2 admits continuum many non-isomorphic irreducible representations. These can be turned into actions of $\mathbb{F}_2 \rtimes (\mathbb{Z}_i, \nu_i)$.

\mathbb{F}_2 also acts on (\mathbb{T}^2, h) where h is the Haar measure. Then $\hat{\mathbb{T}}^2 \cong \mathbb{Z}^2$ and $(\mathbb{F}_2 \rtimes \mathbb{Z}^2, \mathbb{Z}^2)$ has relative property T.

Using the actions of \mathbb{F}_2 and Γ from the theorem of Gaboriau and Lyons, we induce from the diagonal action $\mathbb{F}_2 \rtimes^a (\mathbb{Z}_i \times \mathbb{T}^2, \nu_i \times h)$.

Of these induced actions, only countably many will be orbit equivalent to each other.
The main tool used for proving non-classifiability by countable structures is Hjorth’s theory of turbulence.
Non-classification by countable structures

The main tool used for proving non-classifiability by countable structures is Hjorth’s theory of turbulence.

\(E_0 \) can be reduced to \(OE_\Gamma \) and \(OE_\Gamma \) is not classifiable by countable structures:

- \(\Gamma = \mathbb{F}_n \) or \(\Gamma \) has Property(T) (Tornquist);
- \(\Gamma \) has a copy of \(\mathbb{F}_2 \) (Ioana-Kechris);
- \(\Gamma \) is non-amenable (E-Ioana-Kechris-Tsankov).

\(OE_\Gamma \) is very complex. It is impossible to assign a real valued (or countable algebraic groups, etc) invariant to \(OE_\Gamma \).
Non-classification by countable structures

The main tool used for proving non-classifiability by countable structures is Hjorth’s theory of turbulence.

\(E_0 \) can be reduced to \(OE_\Gamma \) and \(OE_\Gamma \) is not classifiable by countable structures:

- \(\Gamma = F_n \) or \(\Gamma \) has Property(T) (Tornquist);
- \(\Gamma \) has a copy of \(F_2 \) (Ioana-Kechris);
- \(\Gamma \) is non-amenable (E-Ioana-Kechris-Tsankov).

\(OE_\Gamma \) is very complex. It is impossible to assign a real valued (or countable algebraic groups, etc) invariant to \(OE_\Gamma \).

Hjorth showed that the action of \(U(H) \) by conjugacy on the irreducible unitary representations of \(F_2 \) on \(H \) is turbulent.
Sasyk and Tornquist examined isomorphism of \mathcal{II}_1 factors (on space of all \mathcal{II}_1 factors, not just for a fixed group) and obtained the following results:
Sasyk and Tornquist examined isomorphism of II$_1$ factors (on space of all II$_1$ factors, not just for a fixed group) and obtained the following results:

1. Isomorphism of factors is not classifiable by countable structures;
Sasyk and Tornquist examined isomorphism of II$_1$ factors (on space of all II$_1$ factors, not just for a fixed group) and obtained the following results:

1. Isomorphism of factors is not classifiable by countable structures;

2. For any countable language \mathcal{L}, isomorphism on $\text{Mod}(\mathcal{L})$ is Borel reducible to isomorphism of factors;
Sasyk and Tornquist examined isomorphism of II_1 factors (on space of all II_1 factors, not just for a fixed group) and obtained the following results:

1. Isomorphism of factors is not classifiable by countable structures;

2. For any countable language \mathcal{L}, isomorphism on $\text{Mod}(\mathcal{L})$ is Borel reducible to isomorphism of factors;

3. Isomorphism of factors is Borel reducible to an equivalence relation arising from a continuous action of the unitary group of $l^2(\mathbb{N})$ on a Polish space. As a result, it is not the case that every analytic equivalence relation Borel reduces to isomorphism of factors.
Inducing an action of Γ

Let $\Gamma \curvearrowright^{a_0} (X, \mu)$ be free, measure preserving, ergodic and let $\Delta \curvearrowright^{b_0} (X, \mu)$, $\Delta \curvearrowright^{a} (Z, \nu)$ be free, measure preserving such that

$$E_{\Delta}^{b_0} \subset E_{\Gamma}^{a_0}.$$
Inducing an action of Γ

Let $\Gamma \curvearrowright^{a_0} (X, \mu)$ be free, measure preserving, ergodic and let $\Delta \curvearrowright^{b_0} (X, \mu)$, $\Delta \curvearrowright^{a} (Z, \nu)$ be free, measure preserving such that

$$E_{\Delta}^{b_0} \subset E_{\Gamma}^{a_0}.$$

Definition

\[Y = \{(x, f) \mid f: [x]_{\Gamma} \to Z, \quad f(\gamma_0 \cdot x) = \gamma_0 \cdot f(x) \quad \forall \gamma_0 \in \Delta\}. \]
Inducing an action of Γ

Let $\Gamma \curvearrowright^{a_0} (X, \mu)$ be free, measure preserving, ergodic and let $\Delta \curvearrowright^{b_0} (X, \mu), \Delta \curvearrowright^{a} (Z, \nu)$ be free, measure preserving such that

$$E_{\Delta}^{b_0} \subset E_{\Gamma}^{a_0}.$$

Definition

\[Y = \{(x, f) \mid f : [x]_{\Gamma} \to Z, \quad f(\gamma_0 \cdot x) = \gamma_0 \cdot f(x) \quad \forall \gamma_0 \in \Delta\}. \]

We may assume that every E_{Γ} equivalence class contains infinitely many E_{Δ} equivalence classes (the number of equivalence classes is constant since E_{Γ} is ergodic).

Y will be represented as $(X \times Z^\mathbb{N}, \mu \times \nu^\mathbb{N})$.
Inducing an action of Γ

$$Y = \{(x, f) \mid f : [x]_\Gamma \to Z, \quad f(\gamma_0 \cdot x) = \gamma_0 \cdot f(x) \quad \forall \gamma_0 \in \Delta\}.$$

Given (x, f), f can be represented by choosing one value for each Δ-equivalence class in $[x]_\Gamma$.
Inducing an action of Γ

\[Y = \{(x, f) \mid f : [x]_\Gamma \to Z, \quad f(\gamma_0 \cdot x) = \gamma_0 \cdot f(x) \quad \forall \gamma_0 \in \Delta \}. \]

Given (x, f), f can be represented by choosing one value for each Δ-equivalence class in $[x]_\Gamma$.

There exists a Borel sequence of functions $\{g_i : X \to X\}_{i \in \mathbb{N}}$ such that

- $g_0(x) = x$ for every $x \in X$
- given $x \in X$, $\{g_i(x)\}_{i \in \mathbb{N}}$ enumerates a transversal for the Δ-equivalence classes in $[x]_\Gamma$;
- $g_i(x) \neq g_j(x)$ for $x \in X$ and $i \neq j$.
Inducing an action of Γ

$$Y = \{(x, f) \mid f : [x]_{\Gamma} \to Z, \quad f(\gamma_0 \cdot x) = \gamma_0 \cdot f(x) \quad \forall \gamma_0 \in \Delta\}.$$
Given (x, f), f can be represented by choosing one value for each Δ-equivalence class in $[x]_{\Gamma}$.

There exists a Borel sequence of functions $\{g_i : X \to X\}_{i \in \mathbb{N}}$ such that

- $g_0(x) = x$ for every $x \in X$
- given $x \in X$, $\{g_i(x)\}_{i \in \mathbb{N}}$ enumerates a transversal for the Δ-equivalence classes in $[x]_{\Gamma}$;
- $g_i(x) \neq g_j(x)$ for $x \in X$ and $i \neq j$.

Then identify (x, f) with

$$(x, f(g_0(x)), f(g_1(x)), \ldots) \in (X \times \mathbb{Z}^\mathbb{N}, \mu \times \nu^\mathbb{N}).$$
Inducing an action of Γ

Let $\Gamma \curvearrowright Y$ by

$$\gamma \cdot (x, f) = (\gamma \cdot x, f).$$

The action of Γ on a point (x, f) rearranges the representation of f in (\mathbb{Z}^N, ν^N).
Inducing an action of Γ

Let $\Gamma \acts Y$ by

$$\gamma \cdot (x, f) = (\gamma \cdot x, f).$$

The action of Γ on a point (x, f) rearranges the representation of f in $(\mathbb{Z}^\mathbb{N}, \nu^\mathbb{N})$.

This is given by a cocycle $\beta : \Gamma \times X \to S_\infty \ltimes \Delta^\mathbb{N}$. So then $\Gamma \acts^c (X \times \mathbb{Z}^\mathbb{N}, \mu \times \nu^\mathbb{N})$ by

$$\gamma \cdot (x, f) = (\gamma \cdot x, \beta(\gamma, x) \cdot f)$$

where

$S_\infty \ltimes \Delta^\mathbb{N} \acts \mathbb{Z}^\mathbb{N}$ by

$$(\alpha, \delta) \cdot f(k) = \delta(k) \cdot f(\alpha^{-1}(k)).$$
Actions of Γ and Δ

$\Gamma \curvearrowright^c (X \times \mathbb{Z}^N, \mu \times \nu^N)$ is free, measure preserving.
Actions of Γ and Δ

$\Gamma \acts c (X \times \mathbb{Z}^\mathbb{N}, \mu \times \nu^\mathbb{N})$ is free, measure preserving.

Consider the inclusion cocycle $\sigma: \Delta \times X \to \Gamma$ given by

$$\sigma(\delta, x) = \gamma \iff \delta \cdot x = \gamma \cdot x.$$

We also get a free, measure preserving action $\Delta \acts d (X \times \mathbb{Z}^\mathbb{N}, \mu \times \nu^\mathbb{N})$ by letting

$$\delta \cdot (x, f) = \sigma(\delta, x) \cdot (x, f).$$
Actions of Γ and Δ

$\Gamma \curvearrowright^c (X \times Z^\mathbb{N}, \mu \times \nu^\mathbb{N})$ is free, measure preserving.

Consider the inclusion cocycle $\sigma: \Delta \times X \to \Gamma$ given by

$$\sigma(\delta, x) = \gamma \iff \delta \cdot x = \gamma \cdot x.$$

We also get a free, measure preserving action

$\Delta \curvearrowright^d (X \times Z^\mathbb{N}, \mu \times \nu^\mathbb{N})$ by letting

$$\delta \cdot (x, f) = \sigma(\delta, x) \cdot (x, f).$$

We obtain a probability measure m on Y that is ergodic with respect to the action c of Γ by taking an ergodic decomposition.
Lemma

Let $F_2 \curvearrowright^a (\mathbb{T}^2, h)$ and $F_2 \curvearrowright^{a_\pi} (Z, \nu)$ be free, measure preserving, weakly mixing. Then there are actions $\Gamma \curvearrowright^c (Y, m)$ and $F_2 \curvearrowright^d (Y, m)$ such that:

1. $\Gamma \curvearrowright^c (Y, m)$ is free, measure preserving, ergodic;
2. $F_2 \curvearrowright^d (Y, m)$ is free, measure preserving;
3. $E_{F_2}^d \subset E_{\Gamma}^c$;
4. for any non non-null d-invariant subset $Y_0 \subset Y$, $a \times a_\pi$ is a factor of $d|Y_0$;
5. There is an F_2-equivariant, measure preserving, surjective map $q: Y \rightarrow \mathbb{T}^2$ such that $\forall \gamma \in \Gamma \setminus \{e\}$,

$$m(\{y \in Y \mid q(\gamma c \cdot y) = q(y)\}) = 0.$$
The Koopman representation

Definition

When $\Gamma \curvearrowright^a (X, \mu)$, the **Koopman representation**, κ_0^a, is given by

$$\gamma \cdot f(x) = f(\gamma^{-1} \cdot x) \quad \forall f \in L^2_0(X, \mu), \gamma \in \Gamma.$$
The Koopman representation

Definition

When \(\Gamma \curvearrowright^a (X, \mu) \), the **Koopman representation**, \(\kappa_0^a \), is given by

\[
\gamma \cdot f(x) = f(\gamma^{-1} \cdot x) \quad \forall f \in L_0^2(X, \mu), \gamma \in \Gamma.
\]

Definition

For two actions \(\Gamma \curvearrowright^a (X, \mu) \), \(\Gamma \curvearrowright^b (Y, \nu) \), \(b \) is a **factor** of \(a \) if there is a measure preserving, surjective map \(\phi: X \rightarrow Y \) such that

\[
\phi(\gamma \cdot x) = \gamma \cdot \phi(x).
\]

\(a \) and \(b \) are **conjugate** if \(\phi \) is a measure space isomorphism.
The Koopman representation

Definition

When $\Gamma \bowtie^a (X, \mu)$, the Koopman representation, κ^a_0, is given by

$$\gamma \cdot f(x) = f(\gamma^{-1} \cdot x) \quad \forall f \in L^2_0(X, \mu), \gamma \in \Gamma.$$

Definition

For two actions $\Gamma \bowtie^a (X, \mu)$, $\Gamma \bowtie^b (Y, \nu)$, b is a factor of a if there is a measure preserving, surjective map $\phi: X \rightarrow Y$ such that

$$\phi(\gamma \cdot x) = \gamma \cdot \phi(x).$$

a and b are conjugate if ϕ is a measure space isomorphism.

If b is a factor of a, then $\kappa^b_0 \leq \kappa^a_0$.

If b is conjugate to a, then $\kappa^b_0 \cong \kappa^a_0$.
Let $\{\pi_i\}_{i \in I}$ be a set of continuum many non-equivalent, irreducible weakly mixing representations of \mathbf{F}_2. These can be turned into actions $\mathbf{F}_2 \curvearrowright^{a_{\pi_i}} (Z_i, \nu_i)$ such that

$$\pi_i \cong \pi_j \implies \kappa_0^{a_{\pi_i}} \cong \kappa_0^{a_{\pi_j}}$$

and $\pi_i \leq \kappa_0^{a_{\pi_i}}$.

Also, take the action $\mathbf{F}_2 \curvearrowright^{a} (\mathbb{T}^2, h)$.
Let \(\{\pi_i\}_{i \in I} \) be a set of continuum many non-equivalent, irreducible weakly mixing representations of \(F_2 \). These can be turned into actions \(F_2 \curvearrowright^{a_{\pi_i}} (Z_i, \nu_i) \) such that

\[
\pi_i \cong \pi_j \implies \kappa_0^{a_{\pi_i}} \cong \kappa_0^{a_{\pi_j}}
\]

and \(\pi_i \leq \kappa_0^{a_{\pi_i}} \).

Also, take the action \(F_2 \curvearrowright^a (\mathbb{T}^2, h) \).

For each \(i \in I \), let \(c_i \) and \(d_i \) be actions of \(\Gamma \) and \(F_2 \), respectively, that are given by the lemma.
Goal: Each c_i is only orbit equivalent to countably many c_j.
Goal: Each c_i is only orbit equivalent to countably many c_j.

Suppose that there is some $i \in I$ such that there is an uncountable set $J \subset I$ such that c_i is orbit equivalent to c_j for all $j \in J$.
Goal: Each c_i is only orbit equivalent to countably many c_j.

Suppose that there is some $i \in I$ such that there is an uncountable set $J \subset I$ such that c_i is orbit equivalent to c_j for all $j \in J$.

(Ioana) There is an uncountable set $J_0 \subset J$ such that for all $j, k \in J_0$, there are non-null F_2-invariant subsets $Y_j' \subset Y_j$, $Y_k' \subset Y_k$ such that $d_j|Y_j'$ is conjugate to $d_k|Y_k'$.
Proof

Let $i \in J_0$. Then for any $j \in J_0$,

$$
\pi_j \leq \kappa_0^{a \pi_j} \leq \kappa_0^{a \times a \pi_j}.
$$
Proof

Let $i \in J_0$. Then for any $j \in J_0$,

$$\pi_j \leq \kappa_0^{a_{\pi j}} \leq \kappa_0^{a \times a_{\pi j}}.$$

From the construction,

$$\kappa_0^{a \times a_{\pi j}} \leq \kappa_0^{d_j | Y_j'} \cong \kappa_0^{d_i | Y_i'}.$$
Proof

Let $i \in J_0$. Then for any $j \in J_0$,

$$\pi_j \leq \kappa_0^{a_{\pi_j}} \leq \kappa_0^{a \times a_{\pi_j}}.$$

From the construction,

$$\kappa_0^{a \times a_{\pi_j}} \leq \kappa_0^{d_j|Y'_j} \cong \kappa_0^{d_i|Y'_i}$$

Since $\kappa_0^{d_i|Y'_i} \leq \kappa_0^{d_i}$,

$$\pi_j \leq \kappa_0^{d_i}.$$
Proof

Let $i \in J_0$. Then for any $j \in J_0$,

$$\pi_j \leq \kappa_0^{a_{\pi_j}} \leq \kappa_0^{a \times a_{\pi_j}}.$$

From the construction,

$$\kappa_0^{a \times a_{\pi_j}} \leq \kappa_0^{d_j|Y'_j} \cong \kappa_0^{d_i|Y'_i}.$$

Since $\kappa_0^{d_i|Y'_i} \leq \kappa_0^{d_i}$,

$$\pi_j \leq \kappa_0^{d_i}.$$

However, a separable representation may only contain countably many non-equivalent irreducible representations. So each c_i can only be orbit equivalent to countably many c_j.