Workshop on
Set theory and C*-algebras
January 23 to January 27, 2012
American Institute of Mathematics, Palo Alto, California
organized by
Ilijas Farah (York) and David Kerr (Texas A&M)
Interested students and postdocs can apply online:
http://www.aimath.org/
Some open problems on set theory and C*-algebras

Ilijas Farah

York University

3rd(!) European Set Theory Conference, Edinburgh, June 2011
C*-algebras

H: a complex Hilbert space
C*-algebras

H: a complex Hilbert space

$\mathcal{B}(H)$: the algebra of bounded linear operators on H
C*-algebras

H: a complex Hilbert space

$(\mathcal{B}(H), +, \cdot, \cdot^*, \| \cdot \|)$: the algebra of bounded linear operators on H
C*-algebras

\[H: \text{ a complex Hilbert space} \]
\[(\mathcal{B}(H), +, \cdot, \cdot^*, \| \cdot \|): \text{ the algebra of bounded linear operators on } H \]

Definition

A (concrete) \textit{C*-algebra} is a norm-closed subalgebra of \(\mathcal{B}(H) \).
C*-algebras

\[H: \text{ a complex Hilbert space} \]
\[(B(H), +, \cdot, *, \| \cdot \|): \text{ the algebra of bounded linear operators on } H \]

Definition
A (concrete) \textit{C*-algebra} is a norm-closed subalgebra of \(B(H) \).

Theorem (Gelfand–Naimark–Segal, 1942)
A Banach algebra with involution \(A \) is isomorphic to a concrete C*-algebra if and only if

\[\| aa^* \| = \| a \|^2 \]

for all \(a \in A \).
Examples

(1) $B(H)$, $M_n(C)$.

(2) If X is a compact Hausdorff space, $C(X)$.

$C(X) \sim \Rightarrow C(T) \Leftrightarrow X \sim \Rightarrow Y$.

(3) $K(H)$ - the algebra of compact operators on H.

Examples

Example

(1) $\mathcal{B}(H), M_n(\mathbb{C})$.

$K(\mathcal{H})$ - the algebra of compact operators on H.
Examples

Example

(1) $\mathcal{B}(H), \ M_n(\mathbb{C})$.

(2) If X is a compact Hausdorff space, $C(X)$.

\[C(X) \cong C(T) \iff X \cong Y. \]

(3) $\mathcal{K}(H)$ - the algebra of compact operators on H.
1. Classification problems

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Unital, separable UHF algebras are classified by reals.

AF algebras are direct limits of finite-dimensional C*-algebras. Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered (countable, abelian) group $(K_0(A), K_0(A) + 1)$. (Actually, every isomorphism between groups lifts to an isomorphism between algebras.)
1. Classification problems

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by reals.
1. Classification problems

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by reals.

AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered (countable, abelian) group $(K_0(A), K_0(A)^+, 1)$.

(Actually, every isomorphism between groups lifts to an isomorphism between algebras.)
1. Classification problems

UHF algebras are direct limits of full matrix algebras, \(M_n(\mathbb{C}) \).

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by reals.

AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered (countable, abelian) group \((K_0(A), K_0(A)^+, 1)\).
1. Classification problems

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by reals.

AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered (countable, abelian) group $(K_0(A), K_0(A)^+, 1)$.

(Actually, every isomorphism between groups lifts to an isomorphism between algebras.)
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

$$\text{Ell}(A) : (\left(K_0(A), K_0(A)^+, 1\right), K_1(A)).$$
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

$$\text{Ell}(A) : (\langle K_0(A), K_0(A)^+, 1 \rangle, K_1(A)).$$

Conjecture (Elliott, 1990’s)

All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.
Elliott program

Many other subclasses of nuclear, separable, simple, unital
C*-algebras, were classified until 2003 by the Elliott invariant,

\[
\text{Ell}(A) : (\langle K_0(A), K_0(A)^+, 1 \rangle, K_1(A)).
\]

Conjecture (Elliott, 1990’s)

*All nuclear, separable, simple, unital, infinite-dimensional
C*-algebras are classified by the Elliott invariant.*

Spectacular successes: Elliott et. al., Kirchberg–Phillips.
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

$$\text{Ell}(A) : ((K_0(A), K_0(A)^+, 1), K_1(A), T(A)).$$

Conjecture (Elliott, 1990’s)

All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.

Spectacular successes: Elliott et. al., Kirchberg–Phillips.
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

\[\text{Ell}(A) : \left((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A \right). \]

Conjecture (Elliott, 1990’s)

All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.

Spectacular successes: Elliott et. al., Kirchberg–Phillips.

Counterexamples

Jiang–Su, 1999: \[\text{Ell}(\mathbb{Z}) = \text{Ell}(\mathbb{C}), \text{Ell}(A \otimes \mathbb{Z}) = \text{Ell}(A). \]

Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

\[\text{Ell}(A) : ((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A) . \]

Conjecture (Elliott, 1990's)
All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.

Spectacular successes: Elliott et. al., Kirchberg–Phillips.

Counterexamples
Jiang–Su, 1999: \(\text{Ell}(\mathbb{Z}) = \text{Ell}(\mathbb{C}), \text{Ell}(A \otimes \mathbb{Z}) = \text{Ell}(A) \).
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

\[\text{Ell}(A) : ((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A). \]

Conjecture (Elliott, 1990's)

All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.

Spectacular successes: Elliott et. al., Kirchberg–Phillips.

Counterexamples

Jiang–Su, 1999: \(\text{Ell}(\mathcal{Z}) = \text{Ell}(\mathbb{C}), \text{Ell}(A \otimes \mathcal{Z}) = \text{Ell}(A). \)
Elliott program

Many other subclasses of nuclear, separable, simple, unital C*-algebras, were classified until 2003 by the Elliott invariant,

\[\text{Ell}(A) : ((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A). \]

Conjecture (Elliott, 1990’s)

All nuclear, separable, simple, unital, infinite-dimensional C*-algebras are classified by the Elliott invariant.

Spectacular successes: Elliott et. al., Kirchberg–Phillips.

Counterexamples

Jiang–Su, 1999: \(\text{Ell}(\mathbb{Z}) = \text{Ell}(\mathbb{C}), \text{Ell}(A \otimes \mathbb{Z}) = \text{Ell}(A). \)

The basic concept of abstract classification

Definition
If \((X, E)\) and \((Y, F)\) are analytic equivalence relations on standard Borel spaces, \(E\) is \textit{Borel-reducible} to \(F\), in symbols

\[
E \leq_B F,
\]

if there is a Borel-measurable map \(f : X \to Y\) such that

\[
x E y \iff f(x) E f(y).
\]
The basic concept of abstract classification

Definition
If \((X, E)\) and \((Y, F)\) are analytic equivalence relations on standard Borel spaces, \(E\) is \textit{Borel-reducible} to \(F\), in symbols

\[E \leq_B F, \]

if there is a Borel-measurable map \(f : X \rightarrow Y\) such that

\[x E y \iff f(x) E f(y). \]

Theorem (F.–Toms–Törnquist, 2010)
This definition applies to all categories occurring in the Elliott program.
isomorphism of Banach spaces

C*-part by
Farah–Toms–Törnquist

biembeddability of AF

E_{K_σ}

orbit equivalence relations

Cuntz semigroups

E_{G_∞}

simple nuclear

Elliot invariant

isometry of reflexive Banach spaces

compact convex*

simple AI

Choquet simplex

abelian C^*-algebras

compact metric

countable structures

E_{1}

smooth

E_{0}

biembeddability of UHF

UHF
Classification problems

Question

Is the isomorphism of all separable, unital C*-algebras \leq_B orbit equivalence relation of a Polish group action?

What about other classes of C*-algebras?

Question

Is there a set of (nuclear, simple, separable, unital) C*-algebras with the same Elliott invariant on which the isomorphism is not classifiable by countable structures?

(Toms, 2008: There is such a set of size c.)

Question

Is the bi-embeddability relation for nuclear simple separable C*-algebras a complete analytic equivalence relation?

What about bi-embeddability of AF algebras?
Classification problems

Question

Is the isomorphism of all separable, unital C*-algebras \(\leq_B \) orbit equivalence relation of a Polish group action? What about other classes of C*-algebras?
Classification problems

Question

Is the isomorphism of all separable, unital C-algebras \(\leq_B \) orbit equivalence relation of a Polish group action? What about other classes of C*-algebras?*

Question

Is there a set of (nuclear, simple, separable, unital) C-algebras with the same Elliott invariant on which the isomorphism is not classifiable by countable structures?*
(Toms, 2008: There is such a set of size \(\mathfrak{c} \).)
Classification problems

Question
Is the isomorphism of all separable, unital C*-algebras \leq_B orbit equivalence relation of a Polish group action? What about other classes of C*-algebras?

Question
Is there a set of (nuclear, simple, separable, unital) C*-algebras with the same Elliott invariant on which the isomorphism is not classifiable by countable structures? (Toms, 2008: There is such a set of size \mathfrak{c}.)

Question
Is the bi-embeddability relation for nuclear simple separable C*-algebras a complete analytic equivalence relation? What about bi-embeddability of AF algebras?
In the Kechris’s space of separable C*-algebras

Problem

Compute the complexity of different classes of C-algebras.* . . .

(Done by Kechris in some cases.)
In the Kechris’s space of separable C*-algebras

Problem
Compute the complexity of different classes of C*-algebras. . .
(Done by Kechris in some cases.)

Problem
. . . then use this to prove e.g., that

\[\text{bootstrap class } \neq \text{ nuclear}. \]
More open-ended problems

Problem

Develop set-theoretic framework for Elliott’s functorial classification.
More open-ended problems

Problem
Develop set-theoretic framework for Elliott’s functorial classification.

Problem
Apply K-theory to set theory.
2. My favourite

A representation $\pi : A \rightarrow \mathcal{B}(H)$ is irreducible (irrep) if $\pi[A]$ is dense in $\mathcal{B}(H)$.
2. My favourite

A representation $\pi : A \rightarrow \mathcal{B}(H)$ is \textit{irreducible} (irrep) if $\pi[A]$ is dense in $\mathcal{B}(H)$ in the weak operator topology.
2. My favourite

A representation $\pi : A \to \mathcal{B}(H)$ is *irreducible* (irrep) if $\pi[A]$ is dense in $\mathcal{B}(H)$ in the weak operator topology.

$\pi_1 \sim \pi_2$ iff there is an isometry u such that:

\[
\begin{align*}
A \xrightarrow{\pi_1} \mathcal{B}(H_1) & \quad H_1 & (\text{Ad } u)a = uau^* \\
\pi_2 & \xrightarrow{\text{Ad } u} \mathcal{B}(H_2) & H_2
\end{align*}
\]

Theorem (Naimark) If $A = K(H)$ then all irreps of A are equivalent.

Question (Naimark) If all irreps of A are equivalent, is $A \sim K(H)$ for some H?
2. My favourite

A representation $\pi : A \to \mathcal{B}(H)$ is irreducible (irrep) if $\pi[A]$ is dense in $\mathcal{B}(H)$ in the weak operator topology.

$\pi_1 \sim \pi_2$ iff there is an isometry u such that:

$$
\begin{align*}
A \xrightarrow{\pi_1} \mathcal{B}(H_1) & \quad H_1 \quad (\text{Ad } u)a = uau^* \\
\pi_2 \downarrow \quad \text{Ad } u \downarrow u & \quad \mathcal{B}(H_2) \quad H_2
\end{align*}
$$

Theorem (Naimark)

If $A = \mathcal{K}(H)$ then all irreps of A are equivalent.
2. My favourite

A representation \(\pi : A \rightarrow \mathcal{B}(H) \) is irreducible (irrep) if \(\pi[A] \) is dense in \(\mathcal{B}(H) \) in the weak operator topology.

\(\pi_1 \sim \pi_2 \) iff there is an isometry \(u \) such that:

\[
\begin{align*}
A & \overset{\pi_1}{\longrightarrow} \mathcal{B}(H_1) & H_1 & (\text{Ad } u)a = uau^* \\
& \downarrow \pi_2 & \downarrow \text{Ad } u & \\
& \mathcal{B}(H_2) \overset{u}{\longrightarrow} H_2
\end{align*}
\]

Theorem (Naimark)

If \(A = \mathcal{K}(H) \) then all irreps of \(A \) are equivalent.

Question (Naimark)

*If all irreps of \(A \) are equivalent, is \(A \cong \mathcal{K}(H) \) for some \(H \)?
What is known about Naimark’s problem?

Theorem (Akemann–Weaver, 2002)

◊ **implies there is a unital, nonseparable** A **with all irreps equivalent.**
What is known about Naimark’s problem?

Theorem (Akemann–Weaver, 2002)

◊ implies there is a unital, nonseparable A with all irreps equivalent.

A unital + \aleph_1-dimensional $\Rightarrow A \not\sim \mathcal{K}(H)$.

What is known about Naimark’s problem?

Theorem (Akemann–Weaver, 2002)

◇ implies there is a unital, nonseparable A with all irreps equivalent.

A unital + infinite-dimensional $\Rightarrow A \not\cong K(H)$.

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
What is known about Naimark’s problem?
not much

Theorem (Akemann–Weaver, 2002)

◇ implies there is a unital, nonseparable A with all irreps equivalent.

A unital $+$ ∞-dimensional $\Rightarrow A \ncong \mathcal{K}(H)$.

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
Does PFA imply there are no counterexamples to NP?
What is known about Naimark’s problem?
not much

Theorem (Akemann–Weaver, 2002)

◊ implies there is a unital, nonseparable A with all irreps equivalent.

A unital + ∞-dimensional $\Rightarrow A \ncong K(H)$.

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
Does PFA imply there are no counterexamples to NP?
If there is a counterexample to NP, is there one of cardinality c?
What is known about Naimark’s problem?
not much

Theorem (Akemann–Weaver, 2002)

◊ *implies there is a unital, nonseparable* \(A \) *with all irreps equivalent.*

\(A \) unital + \(\infty \)-dimensional \(\Rightarrow \) \(A \not\cong \mathcal{K}(H) \).

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
Does PFA imply there are no counterexamples to NP?
If there is a counterexample to NP, is there one of cardinality \(c \)?
If we add \(\aleph_2 \) Cohen/random/Mahias... reals to a model of CH, is there a counterexample to NP?
What is known about Naimark’s problem?
not much

Theorem (Akemann–Weaver, 2002)

◊ implies there is a unital, nonseparable A with all irreps equivalent.

A unital $+$ ∞-dimensional $\Rightarrow A \not\cong \mathcal{K}(H)$.

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
Does PFA imply there are no counterexamples to NP?
If there is a counterexample to NP, is there one of cardinality c?
If we add \aleph_2 Cohen/random/Mahias... reals to a model of CH, is there a counterexample to NP?
If we add supercompact many Cohen/random/Mathias... reals, is there a counterexample to NP?
What is known about Naimark’s problem?
not much

Theorem (Akemann–Weaver, 2002)

◊ implies there is a unital, nonseparable A with all irreps equivalent.

A unital + ∞-dimensional $\Rightarrow A \not\cong \mathcal{K}(H)$.

Question

Does CH imply there is a counterexample to Naimark’s Problem (NP)?
Does PFA imply there are no counterexamples to NP?
If there is a counterexample to NP, is there one of cardinality \mathfrak{c}?
If we add \aleph_2 Cohen/random/Mahias... reals to a model of CH, is there a counterexample to NP?
If we add supercompact many Cohen/random/Mathias... reals, is there a counterexample to NP?
A ‘consistency result’

Lemma (F., 2008)

If A is a counterexample to NP and forcing \mathbb{P} adds a real then \mathbb{P} forces that (the completion of) A has an irrep not equivalent to any ground-model irrep.

Corollary

‘There are no counterexamples to NP’ is relatively consistent with ZFC-Power set axiom.

Proof.

Add ORD many Cohen reals to V.

A ‘consistency result’

Lemma (F., 2008)

If A is a counterexample to NP and forcing \mathbb{P} adds a real then \mathbb{P} forces that (the completion of) A has an irrep not equivalent to any ground-model irrep.

Corollary

‘There are no counterexamples to NP’ is relatively consistent with ZFC-Power set axiom.
A ‘consistency result’

Lemma (F., 2008)
If A is a counterexample to NP and forcing \mathbb{P} adds a real then \mathbb{P} forces that (the completion of) A has an irrep not equivalent to any ground-model irrep.

Corollary
‘There are no counterexamples to NP’ is relatively consistent with ZFC-Power set axiom.

Proof.
Add ORD many Cohen reals to V. \qed
Once we have consistency of a positive answer to NP…”

Theorem (Glimm, 1960)

If a simple separable C-algebra A has inequivalent irreps, then it has 2^\aleph_0 inequivalent irreps.*
Once we have consistency of a positive answer to NP...

Theorem (Glimm, 1960)
If a simple separable C*-algebra A has inequivalent irreps, then it has 2^\aleph_0 inequivalent irreps.

Problem
What is the ‘right’ theorem for not necessarily separable algebras?
Once we have consistency of a positive answer to NP...

Theorem (Glimm, 1960)

If a simple separable C-algebra A has inequivalent irreps, then it has 2^{\aleph_0} inequivalent irreps.*

Problem

What is the ‘right’ theorem for not necessarily separable algebras?

Question

For what cardinals (finite or infinite) n there exists a simple C-algebra with exactly n inequivalent irreps?*

(Conjecture: $\Diamond \implies$ (at least) for all $n \in \mathbb{N}$.)
2b. States

\[a \in A \text{ is positive if } a = b^*b \text{ for some } b \in A. \]
2b. States

\[a \in A \text{ is positive if } a = b^*b \text{ for some } b \in A. \]

Definition

A \(\varphi \in A^* \) is positive if \(\varphi(a) \geq 0 \) for positive \(a \in A \).

It is a state if \(\| \varphi \| = 1 \).

\[S(A) := \{ \varphi \in A^* : \varphi \geq 0, \| \varphi \| = 1 \} \]

\(\mathcal{P}(A) := \) the extreme points of \(S(A) \) (pure states).
2b. States

$a \in A$ is positive if $a = b^* b$ for some $b \in A$.

Definition

A $\varphi \in A^*$ is positive if $\varphi(a) \geq 0$ for positive $a \in A$.

It is a state if $\|\varphi\| = 1$.

$$S(A) := \{ \varphi \in A^* : \varphi \geq 0, \|\varphi\| = 1 \}$$

$\mathcal{P}(A) :=$ the extreme points of $S(A)$ (pure states).

GNS-correspondence

states \iff cyclic representations.

pure states \iff irreps.
A virgin problem

Theorem (Stone–Weierstrass)

If A is a subalgebra of B, B is abelian, and A separates $\mathcal{P}(B) \cup \{0\}$ (i.e., $\varphi \neq \psi$ implies $\varphi \upharpoonright A \neq \psi \upharpoonright A$) then $A = B$.

Problem (Noncommutative Stone–Weierstrass problem)

Is it true that if A is a subalgebra of B and A separates $\mathcal{P}(B) \cup \{0\}$ then $A = B$?

A number of partial results (Glimm, Akemann, Sakai,...), all of them fairly old.

It is open even for separable C*-algebras.
A virgin problem

Theorem (Stone–Weierstrass)

If A is a subalgebra of B, B is abelian, and A separates $\mathcal{P}(B) \cup \{0\}$ (i.e., $\varphi \neq \psi$ implies $\varphi \upharpoonright A \neq \psi \upharpoonright A$) then $A = B$.
Theorem (Stone–Weierstrass)

If A is a subalgebra of B, B is abelian, and A separates $\mathcal{P}(B) \cup \{0\}$ (i.e., $\varphi \neq \psi$ implies $\varphi \upharpoonright A \neq \psi \upharpoonright A$) then $A = B$.

Problem (Noncommutative Stone–Weierstrass problem)

Is it true that if A is a subalgebra of B and A separates $\mathcal{P}(B) \cup \{0\}$ then $A = B$?
A virgin problem

Theorem (Stone–Weierstrass)

If A is a subalgebra of B, B is abelian, and A separates $\mathcal{P}(B) \cup \{0\}$ (i.e., $\varphi \neq \psi$ implies $\varphi \upharpoonright A \neq \psi \upharpoonright A$) then $A = B$.

Problem (Noncommutative Stone–Weierstrass problem)

Is it true that if A is a subalgebra of B and A separates $\mathcal{P}(B) \cup \{0\}$ then $A = B$?

A number of partial results (Glimm, Akemann, Sakai,...), all of them fairly old.
A virgin problem

Theorem (Stone–Weierstrass)

If A is a subalgebra of B, B is abelian, and A separates $\mathcal{P}(B) \cup \{0\}$ (i.e., $\varphi \neq \psi$ implies $\varphi \upharpoonright A \neq \psi \upharpoonright A$) then $A = B$.

Problem (Noncommutative Stone–Weierstrass problem)

Is it true that if A is a subalgebra of B and A separates $\mathcal{P}(B) \cup \{0\}$ then $A = B$?

A number of partial results (Glimm, Akemann, Sakai, . . .), all of them fairly old.

It is open even for separable C*-algebras.
3. $\mathbb{P}(C(H))$, the space of projections in $C(H)$

\[
\begin{align*}
p \leq q & \iff pq = p \\
p \perp q & \iff pq = 0
\end{align*}
\]
3. $\mathcal{P}(C(H))$, the space of projections in $C(H)$

\[p \leq q \iff pq = p \iff \|pq\| = 1 \]
\[p \perp q \iff pq = 0 \iff \|pq\| = 0 \]
3. $\mathcal{P}(\mathcal{C}(H))$, the space of projections in $\mathcal{C}(H)$

\[
p \leq q \iff pq = p \iff \|pq\| = 1
\]

\[
p \perp q \iff pq = 0 \iff \|pq\| = 0
\]

Fix an orthonormal basis for H, e_n, for $n \in \mathbb{N}$.
3. $\mathcal{P}(\mathcal{C}(H))$, the space of projections in $\mathcal{C}(H)$

\[p \leq q \iff pq = p \iff \|pq\| = 1 \]
\[p \perp q \iff pq = 0 \iff \|pq\| = 0 \]

Fix an orthonormal basis for H, e_n, for $n \in \mathbb{N}$.

\[
\begin{array}{ccc}
\mathcal{P}(\mathbb{N}) \ni X & \longrightarrow & p_X \in \mathcal{P}(\mathcal{B}(H)) \\
\downarrow & & \downarrow \\
\mathcal{P}(\mathbb{N})/\text{Fin} \ni [X] & \longrightarrow & [p_X] \in \mathcal{P}(\mathcal{C}(H))
\end{array}
\]
3. $\mathbb{P}(\mathcal{C}(H))$, the space of projections in $\mathcal{C}(H)$

\[
p \leq q \iff pq = p \iff \|pq\| = 1
\]
\[
p \perp q \iff pq = 0 \iff \|pq\| = 0
\]

Fix an orthonormal basis for H, e_n, for $n \in \mathbb{N}$.

\[
\begin{array}{ccc}
P(\mathbb{N}) \ni X & \longrightarrow & p_X \in \mathbb{P}(\mathcal{B}(H)) \quad p_X = \text{proj}_{\text{Span}\{e_n: n \in X\}} \\
\downarrow & & \downarrow \\
P(\mathbb{N})/\text{Fin} \ni [X] & \longrightarrow & [p_X] \in \mathbb{P}(\mathcal{C}(H)) \\
\subseteq^*\text{-chain} & \longrightarrow & \leq\text{-chain}
\end{array}
\]
3. $\mathbb{P}(C(H))$, the space of projections in $C(H)$

\[
p \leq q \iff pq = p \iff \|pq\| = 1
\]
\[
p \perp q \iff pq = 0 \iff \|pq\| = 0
\]

Fix an orthonormal basis for H, e_n, for $n \in \mathbb{N}$.

\[
\begin{align*}
\mathcal{P}(\mathbb{N}) \ni X & \quad \longrightarrow \quad p_X \in \mathbb{P}(\mathcal{B}(H)) \\
\downarrow & \quad \quad \downarrow \\
\mathcal{P}(\mathbb{N})/\text{Fin} \ni [X] & \quad \longrightarrow \quad [p_X] \in \mathbb{P}(C(H))
\end{align*}
\]

\subseteq^\ast-chain $\longrightarrow \leq$-chain

maximal \subseteq^\ast-chain $\not\rightarrow$ maximal \leq-chain

(E. Wofsey, 2007)
3. \(\mathcal{P}(\mathcal{C}(H)) \), the space of projections in \(\mathcal{C}(H) \)

\[
\begin{align*}
p \leq q & \iff pq = p \\
p \perp q & \iff pq = 0
\end{align*}
\]
\(\iff \|pq\| = 1 \)
\(\iff \|pq\| = 0 \)

Fix an orthonormal basis for \(H \), \(e_n \), for \(n \in \mathbb{N} \).

\[
\begin{array}{c}
\mathcal{P}(\mathbb{N}) \ni X \quad \xrightarrow{\text{}} \quad p_X \in \mathcal{P}(\mathcal{B}(H)) \\
\downarrow \quad \quad \quad \quad \downarrow \\
\mathcal{P}(\mathbb{N})/\text{Fin} \ni [X] \quad \xrightarrow{\text{}} \quad [p_X] \in \mathcal{P}(\mathcal{C}(H))
\end{array}
\]

\(\subseteq^* \)-chain \(\xrightarrow{\text{}} \) \(\leq \)-chain

maximal \(\subseteq^* \)-chain \(\not\rightarrow \) maximal \(\leq \)-chain \quad \text{(E. Wofsey, 2007)}

Similarly for (maximal) almost disjoint families. \text{(E. Wofsey, 2007.)}
Quantum cardinal invariants

Any statement $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an analogue for $\mathcal{P}(C(H))$. ‘Quantized’ versions of cardinal invariants a, b, c, d, \ldots: $a^*, b^*, c^*, d^*, \ldots$
Quantum cardinal invariants

Any statement $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an analogue for $\mathbb{P}(C(H))$. ‘Quantized’ versions of cardinal invariants a, b, c, d, \ldots: $a^*, b^*, c^*, d^*, \ldots$

Proposition

1. $c = c^*$
Quantum cardinal invariants

Any statement $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an analogue for $\mathbb{P}(\mathcal{C}(H))$. ‘Quantized’ versions of cardinal invariants a, b, c, d, \ldots: $a^*, b^*, c^*, d^*, \ldots$

Proposition

1. $c = c^*$ (a joke).
Quantum cardinal invariants

Any statement $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an analogue for $\mathbb{P}(C(H))$.
‘Quantized’ versions of cardinal invariants a, b, c, d, \ldots: $a^*, b^*, c^*, d^*, \ldots$

Proposition

1. $c = c^*$ (*a joke*).
2. $b = b^*, d = d^*$ (*Zamora-Aviles, 2009*).
Quantum cardinal invariants

Any statement $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an analogue for $\mathbb{P}(\mathcal{C}(H))$.

‘Quantized’ versions of cardinal invariants a, b, c, d, \ldots:

$a^*, b^*, c^*, d^*, \ldots$

Proposition

1. $c = c^*$ (*a joke*).
2. $b = b^*, d = d^*$ (*Zamora-Aviles, 2009*).

Problem

Gaps in $\mathcal{P}(\mathbb{N})/\text{Fin}$ vs. gaps in $\mathbb{P}(\mathcal{C}(H))$.

(More on this in two weeks from now.)
3b. Quantum filters

Definition
Some $\mathcal{F} \subseteq \mathcal{P}(C(H)) \setminus \{0\}$ is a quantum filter if

$$(\forall p \in \mathcal{F})(\forall q)p \leq q \rightarrow q \in \mathcal{F}$$

$$(\forall F \subseteq \mathcal{F})F \text{ finite } \Rightarrow \| \prod F \| = 1$$
3b. Quantum filters

Definition
Some \(F \subseteq \mathcal{P}(C(H)) \setminus \{0\} \) is a quantum filter if

\[
(\forall p \in F)(\forall q)p \leq q \rightarrow q \in F
\]

\[
(\forall F \subseteq F)F \text{ finite } \Rightarrow \| \prod F \| = 1
\]

Theorem (T. Bice, 2011)

The assertion ‘a maximal quantum filter in \(C(H) \) can be a filter’ is independent from ZFC.

Question
Does every ultrafilter \(U \) on \(\mathbb{N} \) generate a unique maximal quantum filter in \(C(H) \)?
3b. Quantum filters

Definition
Some $\mathcal{F} \subseteq \mathcal{P}(\mathcal{C}(H)) \setminus \{0\}$ is a quantum filter if

$$(\forall p \in \mathcal{F})(\forall q) p \leq q \rightarrow q \in \mathcal{F}$$

$$(\forall F \subseteq \mathcal{F}) F \text{ finite } \Rightarrow \| \prod F \| = 1$$

Theorem (T. Bice, 2011)

The assertion ‘a maximal quantum filter in $\mathcal{C}(H)$ can be a filter’ is independent from ZFC.

Question

Does every ultrafilter \mathcal{U} on \mathbb{N} generate a unique maximal quantum filter in $\mathcal{C}(H)$?

This is the famous Kadison–Singer Problem (1957).
3b. Quantum filters

Definition
Some \(\mathcal{F} \subseteq \mathbb{P}(C(H)) \setminus \{0\} \) is a quantum filter if

\[
(\forall p \in \mathcal{F})(\forall q) p \leq q \rightarrow q \in \mathcal{F} \\
(\forall F \subseteq \mathcal{F}) F \text{ finite } \Rightarrow \| \prod F \| = 1
\]

Theorem (T. Bice, 2011)
The assertion ‘a maximal quantum filter in \(C(H) \) can be a filter’ is independent from ZFC.

Question
Does every pure state on the canonical copy of \(C(\beta\mathbb{N} \setminus \mathbb{N}) \) extend uniquely to a pure state of \(C(H) \)?
This is the famous Kadison–Singer Problem (1957).
3b. Quantum filters

Definition
Some $F \subseteq \mathcal{P}(C(H)) \setminus \{0\}$ is a quantum filter if

$$(\forall p \in F)(\forall q)p \leq q \implies q \in F$$

$$(\forall F \subseteq F)F \text{ finite } \implies \| \prod F \| = 1$$

Theorem (T. Bice, 2011)

The assertion ‘a maximal quantum filter in $C(H)$ can be a filter’ is independent from ZFC.

Question

Does every ultrafilter \mathcal{U} on \mathbb{N} generate a unique maximal quantum filter in $C(H)$?

This is the famous *Kadison–Singer Problem* (1957).

Reid, 1971: Yes if \mathcal{U} is a q-point.
3b. Quantum filters

Definition

Some $\mathcal{F} \subseteq \mathcal{P}(\mathcal{C}(H)) \setminus \{0\}$ is a quantum filter if

\[
(\forall p \in \mathcal{F})(\forall q)\; p \leq q \rightarrow q \in \mathcal{F}
\]

\[
(\forall F \subseteq \mathcal{F})F\text{ finite } \Rightarrow \| \prod F \| = 1
\]

Theorem (T. Bice, 2011)

The assertion ‘a maximal quantum filter in $\mathcal{C}(H)$ can be a filter’ is independent from ZFC.

Question

Does every ultrafilter \mathcal{U} on \mathbb{N} generate a unique maximal quantum filter in $\mathcal{C}(H)$?

This is the famous Kadison–Singer Problem (1957).

Reid, 1971: Yes if \mathcal{U} is a q-point.

Anderson, 1974: The conclusion of the KS problem is equivalent to an arithmetic statement.
Question

If \mathcal{F} is a maximal quantum filter, is it diagonalized by the image of an ultrafilter \mathcal{U}?

More precisely: Is there a basis e'_n, for $n \in \mathbb{N}$, of H such that $\{p^{(e'_n)}_X : X \in \mathcal{U}\} \subseteq \mathcal{F}$?
Question

If \mathcal{F} is a maximal quantum filter, is it diagonalized by the image of an ultrafilter \mathcal{U}?

More precisely: Is there a basis e'_n, for $n \in \mathbb{N}$, of H such that

$$\{p_X^{(e'_n)} : X \in \mathcal{U}\} \subseteq \mathcal{F}?$$

This is the not-so-famous Kadison–Singer problem (same year, same Kadison, same Singer, same paper).
Question

If \(\mathcal{F} \) *is a maximal quantum filter, is it diagonalized by the image of an ultrafilter* \(\mathcal{U} \)?

More precisely: Is there a basis \(e'_n \), for \(n \in \mathbb{N} \), of \(H \) such that \(\{ p^{(e'_n)}_X : X \in \mathcal{U} \} \subseteq \mathcal{F} \)?

This is the not-so-famous Kadison–Singer problem (same year, same Kadison, same Singer, same paper).

Conjecture (Anderson, 1974)

Every maximal quantum filter \(\mathcal{F} \) *is generated by* \(\{ p^{(e'_n)}_X : X \in \mathcal{U} \} \) *for some* \(\mathcal{U} \) *and some* \((e'_n) \).
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and KP#2 has a negative answer.
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and KP\#2 has a negative answer.

Theorem (F.–Weaver, 2008)

$\mathfrak{d} \geq t^*$ implies Anderson’s conjecture is false and KP\#2 has a negative answer.

Conjecture (F.)

ZFC implies Anderson’s conjecture is false and KP\#2 has a negative answer.

Problem

Develop the analogue of Rudin–Keisler ordering for (maximal) quantum filters.

Problem

Prove analogues of Solecki’s results for ‘analytic quantum p-ideals.’

(Zamora–Aviles, 2009: Some results in this direction.)
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and $KP\#2$ has a negative answer.

Theorem (F.–Weaver, 2008)

$\vartheta \geq t^*$ implies Anderson’s conjecture is false and $KP\#2$ has a negative answer.

Conjecture (F.)

ZFC implies Anderson’s conjecture is false and $KP\#2$ has a negative answer.
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and KP#2 has a negative answer.

Theorem (F.–Weaver, 2008)

d ≥ t* implies Anderson’s conjecture is false and KP#2 has a negative answer.

Conjecture (F.)

ZFC implies Anderson’s conjecture is false and KP#2 has a negative answer.

Problem

Develop the analogue of Rudin–Keisler ordering for (maximal) quantum filters.
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and KP#2 has a negative answer.

Theorem (F.–Weaver, 2008)

\[\varnothing \geq t^* \text{ implies Anderson’s conjecture is false and KP#2 has a negative answer.} \]

Conjecture (F.)

ZFC implies Anderson’s conjecture is false and KP#2 has a negative answer.

Problem

Develop the analogue of Rudin–Keisler ordering for (maximal) quantum filters.

Problem

Prove analogues of Solecki’s results for ‘analytic quantum p-ideals.’
Theorem (Akemann–Weaver, 2007)

CH implies Anderson’s conjecture is false and KP#2 has a negative answer.

Theorem (F.–Weaver, 2008)

\[d \geq t^* \text{ implies Anderson’s conjecture is false and KP#2 has a negative answer.} \]

Conjecture (F.)

ZFC implies Anderson’s conjecture is false and KP#2 has a negative answer.

Problem

Develop the analogue of Rudin–Keisler ordering for (maximal) quantum filters.

Problem

Prove analogues of Solecki’s results for ‘analytic quantum p-ideals.’ (Zamora–Aviles, 2009: Some results in this direction.)
4. Multiplier algebras

A representation $\pi : A \to \mathcal{B}(H)$ is nondegenerate if

$$(\forall b \in \mathcal{B}(H)) b(\pi[A]) = \{0\} \text{ if and only if } b = 0.$$
A representation \(\pi : A \to \mathcal{B}(H) \) is nondegenerate if

\[
(\forall b \in \mathcal{B}(H)) b(\pi[A]) = \{0\} \text{ if and only if } b = 0.
\]

Fix a nondegenerate representation of \(A \), identify \(A \) with \(\pi(A) \).

\[
M(A) = \{ b \in \mathcal{B}(H) : bA \subseteq A \text{ and } Ab \subseteq A \}
\]

is a \(\text{C}^* \)-subalgebra of \(\mathcal{B}(H) \), called the \textit{multiplier algebra of} \(A \).
Properties of $M(A)$

$$M(A) = \{ b \in B(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$
Properties of $M(A)$

$$M(A) = \{ b \in \mathcal{B}(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
Properties of $M(A)$

\[M(A) = \{ b \in B(H) : bA \subseteq A \text{ and } Ab \subseteq A \} \]

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.

$C_0(A) = M(A) / A$ is the corona of A.

If $A = K(H)$ then $M(A) = B(H)$.
Properties of $M(A)$

\[M(A) = \{ b \in B(H) : bA \subseteq A \text{ and } Ab \subseteq A \} \]

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.
3. A is an ideal in $M(A)$.
Properties of $M(A)$

$$M(A) = \{ b \in B(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.
3. A is an ideal in $M(A)$.
4. If $A = \mathcal{K}(H)$ then $M(A) = B(H)$
Properties of $M(A)$

$$M(A) = \{ b \in B(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.
3. A is an ideal in $M(A)$.
4. If $A = K(H)$ then $M(A) = B(H)$
5. If $A = C_0(X)$ then $M(A) = C(\beta X)$
Properties of $M(A)$

$$M(A) = \{ b \in \mathcal{B}(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.
3. A is an ideal in $M(A)$.
4. If $A = \mathcal{K}(H)$ then $M(A) = \mathcal{B}(H)$
5. If $A = C_0(X)$ then $M(A) = C(\beta X)$

$C(A) = M(A)/A$ is the *corona* of A.
Properties of $M(A)$

$$M(A) = \{ b \in \mathcal{B}(H) : bA \subseteq A \text{ and } Ab \subseteq A \}$$

1. $M(A)$ does not depend on the choice of (nondegenerate) representation of A, up to the isomorphism.
2. If A is unital, then $M(A) = A$.
3. A is an ideal in $M(A)$.
4. If $A = \mathcal{K}(H)$ then $M(A) = \mathcal{B}(H)$ and $\mathcal{C}(A) = \mathcal{C}(H)$
5. If $A = C_0(X)$ then $M(A) = C(\beta X)$ and $\mathcal{C}(A) = C(\beta X \setminus X)$

$C(A) = M(A)/A$ is the corona of A.

Rigidity

An isomorphism $\Phi : C(A) \rightarrow C(B)$ is *trivial* if a *-homomorphism $F : M(A) \rightarrow M(B)$ lifts it:

$$
\begin{array}{ccc}
M(A) & \xrightarrow{\Phi} & M(B) \\
\downarrow & & \downarrow \\
C(A) & \xrightarrow{F} & C(B)
\end{array}
$$

The following are relatively consistent with ZFC (and follow from PFA).

1. (Shelah) Every automorphism of $C(\beta \mathbb{N} \setminus \mathbb{N})$ is trivial.
2. (Veličkovic) Every automorphism of $C(\beta \kappa \setminus \kappa)$ is trivial, for all κ.
3. (F.) Every automorphism of $\bigotimes_{i<n} C(\beta \gamma \setminus \gamma)$ is trivial, for all $\gamma < \omega_1$ and all n.
4. (F.) Every automorphism of $C(H)$ is trivial.
Rigidity

An isomorphism $\Phi : C(A) \rightarrow C(B)$ is trivial if a *-homomorphism $F : M(A) \rightarrow M(B)$ lifts it:

$$
\begin{array}{ccc}
M(A) & \xrightarrow{\Phi} & M(B) \\
\downarrow & & \downarrow \\
C(A) & \xrightarrow{F} & C(B)
\end{array}
$$

The following are relatively consistent with ZFC (and follow from PFA).

1. (Shelah) Every automorphism of $C(\beta \mathbb{N} \setminus \mathbb{N})$ is trivial.
2. (Veličkovic) Every automorphism of $C(\beta \kappa \setminus \kappa)$ is trivial, for all κ.
3. (F.) Every automorphism of $\bigotimes_{i<n} C(\beta \gamma \setminus \gamma)$ is trivial, for all $\gamma < \omega_1$ and all n.
4. (F.) Every automorphism of $C(H)$ is trivial, for all H.
Quantum rigidity conjectures

Conjecture

*PFA implies that all *-isomorphisms between coronas of separable C*-algebras are trivial.*
Quantum rigidity conjectures

Conjecture

PFA implies that all *-isomorphisms between coronas of separable C*-algebras are trivial.

Perhaps even all *-homomorphisms between coronas of separable C*-algebras are trivial.
Quantum rigidity conjectures

Conjecture

PFA implies that all *-isomorphisms between coronas of separable C*-algebras are trivial.
Perhaps even all *-homomorphisms between coronas of separable C*-algebras are trivial.

Theorem (F.–Hart, Coskey–F., 2011)

CH implies that $C(A)$ has 2^{\aleph_1} nontrivial automorphisms, for (almost) all separable A.
(More on this in two weeks from now.)
All presently known automorphisms Φ of $C(A)$’s are ‘pointwise trivial’: if $\Phi(a) = b$ then a and b are conjugate.
All presently known automorphisms Φ of $C(A)$’s are ‘pointwise trivial’: if $\Phi(a) = b$ then a and b are conjugate.

Question

Can $C(H)$ have an automorphism that is not pointwise trivial?
All presently known automorphisms Φ of $C(A)$’s are ‘pointwise trivial’: if $\Phi(a) = b$ then a and b are conjugate.

Question

Can $C(H)$ have an automorphism that is not pointwise trivial?

The following is (provably) the most interesting instance of this question.

Question (Brown–Douglas–Fillmore, 1977)

Is there an automorphism Φ of $C(H)$ that sends the unilateral shift to its adjoint?
All presently known automorphisms Φ of C(A)’s are ‘pointwise trivial’: if Φ(a) = b then a and b are conjugate.

Question

Can C(H) have an automorphism that is not pointwise trivial?

The following is (provably) the most interesting instance of this question.

Question (Brown–Douglas–Fillmore, 1977)

Is there an automorphism Φ of C(H) that sends the unilateral shift to its adjoint?

Lemma (F.)

1. TA implies negative answer.
2. Such Φ cannot send the ‘atomic masa’ (i.e., the ‘canonical’ copy of $C(\beta\mathbb{N} \setminus \mathbb{N})$) to itself.
Topics I did not get to cover

1. Nonseparable C*-algebras (Weaver, F.–Katsura, F.)
5. Group cohomology and corona automorphisms (Coskey–F.)
Topics I did not get to cover

1. Nonseparable C*-algebras (Weaver, F.–Katsura, F.)
5. Group cohomology and corona automorphisms (Coskey–F.)

…and this is only the beginning.
More information available at
http://www.math.yorku.ca/~ifarah/preprints.html